Dinosaurs reveal the geographical signature of an evolutionary radiation

  • Nature Ecology & Evolutionvolume 2pages452458 (2018)
  • doi:10.1038/s41559-017-0454-6
  • Download Citation
Published online:


Dinosaurs dominated terrestrial ecosystems across the globe for over 100 million years and provide a classic example of an evolutionary radiation. However, little is known about how these animals radiated geographically to become globally distributed. Here, we use a biogeographical model to reconstruct the dinosaurs’ ancestral locations, revealing the spatial mechanisms that underpinned this 170-million-year-long radiation. We find that dinosaurs spread rapidly initially, followed by a significant continuous and gradual reduction in their speed of movement towards the Cretaceous/Tertiary boundary (66 million years ago). This suggests that the predominant mode of dinosaur speciation changed through time with speciation originally largely driven by geographical isolation—when dinosaurs speciated more, they moved further. This was gradually replaced by increasing levels of sympatric speciation (species taking advantage of ecological opportunities within their existing environment) as terrestrial space became a limiting factor. Our results uncover the geographical signature of an evolutionary radiation.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.


  1. 1.

    Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biol. Lett. 4, 733–736 (2008).

  2. 2.

    Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition and opportunism in the evolutionary radiation of dinosaurs. Science 321, 1485–1488 (2008).

  3. 3.

    Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their extinction. Proc. Natl. Acad. Sci. USA 113, 5036–5040 (2016).

  4. 4.

    Sereno, P. C. The origin and evolution of dinosaurs. Annu. Rev. Earth Planet. Sci. 25, 435–489 (1997).

  5. 5.

    Martinez, R. N. et al. A basal dinosaur from the dawn of the dinosaur era in Southwestern Pangaea. Science 331, 206–210 (2011).

  6. 6.

    Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & Novas, F. E. The origin and early evolution of dinosaurs. Biol. Rev. 85, 55–110 (2010).

  7. 7.

    Brusatte, S. L. et al. The origin and early radiation of dinosaurs. Earth Sci. Rev. 101, 68–100 (2010).

  8. 8.

    Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS. Biol. 12, e1001853 (2014).

  9. 9.

    Bouckaert, R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ 4, e2406 (2016).

  10. 10.

    Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).

  11. 11.

    McAllister Rees, P., Noto, C. R., Parrish, J. M. & Parrish, J. T. Late Jurassic climates, vegetation, and dinosaur distributions. J. Geol. 112, 643–653 (2004).

  12. 12.

    Ezcurra, M. D. Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages. Proc. R. Soc. B 277, 2547–2552 (2010).

  13. 13.

    Mannion, P. D. et al. A temperate palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical partitioning. Glob. Ecol. Biogeogr. 21, 898–908 (2012).

  14. 14.

    Noto, C. R. & Grossman, A. Broad-scale patterns of late jurassic dinosaur paleoecology. PLoS. One 5, e12553 (2010).

  15. 15.

    Brusatte, S. L. Dinosaur Paleobiology Vol. 2 (Wiley, Hoboken, 2012).

  16. 16.

    Herman, A. B., Spicer, R. A. & Spicer, T. E. V. Environmental constraints on terrestrial vertebrate behaviour and reproduction in the high Arctic of the Late Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 317–338 (2016).

  17. 17.

    Longrich, N. R. A ceratopsian dinosaur from the Late Cretaceous of eastern North America, and implications for dinosaur biogeography. Cretac. Res. 57, 199–207 (2016).

  18. 18.

    Longrich, N. R. The horned dinosaurs Pentaceratops and Kosmoceratops from the upper Campanian of Alberta and implications for dinosaur biogeography. Cretac. Res. 51, 292–308 (2014).

  19. 19.

    Wiens, J. J. The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Q. Rev. Biol. 86, 75–96 (2011).

  20. 20.

    Haq, B. U., Hardenbol, J. & Vail, P. R. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167 (1987).

  21. 21.

    Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, New York, 1944).

  22. 22.

    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, New York, 2000).

  23. 23.

    Venditti, C., Meade, A. & Pagel, M. Phylogenies reveal new interpretation of speciation and the Red Queen. Nature 463, 349–352 (2010).

  24. 24.

    Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. R. Soc. B 273, 1987–1998 (2006).

  25. 25.

    Mahler, D. L., Revell, L. J., Glor, R. E. & Losos, J. B. Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles. Evolution 64, 2731–2745 (2010).

  26. 26.

    Grant, P. R. Speciation and the adaptive radiation of Darwin’s finches: the complex diversity of Darwin’s finches may provide a key to the mystery of how intraspecific variation is transformed into interspecific variation. Am. Sci. 69, 653–663 (1981).

  27. 27.

    Osborn, H. F. The geological and faunal relations of Europe and America during the Tertiary period and the theory of the successive invasions of an African fauna. Science 11, 561–574 (1900).

  28. 28.

    Foth, C., Brusatte, S. L. & Butler, R. J. Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria). J. Evolut. Biol. 25, 904–915 (2012).

  29. 29.

    Erwin, D. H. A preliminary classification of evolutionary radiations. Hist. Biol. 6, 133–147 (1992).

  30. 30.

    Losos, J. B. & Miles, D. B. Testing the hypothesis that a clade has adaptively radiated: Iguanid lizard clades as a case study. Am. Nat. 160, 147–157 (2002).

  31. 31.

    Abe, F. R. & Lieberman, B. S. The nature of evolutionary radiations: a case study involving Devonian Trilobites. Evol. Biol. 36, 225–234 (2009).

  32. 32.

    Rundell, R. J. & Price, T. D. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24, 394–399 (2009).

  33. 33.

    Simões, M. et al. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31, 27–34 (2016).

  34. 34.

    Hone, D. W. E., Naish, D. & Cuthill, I. C. Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs? Lethaia 45, 139–156 (2012).

  35. 35.

    Padian, K. & Horner, J. R. The evolution of ‘bizarre structures’ in dinosaurs: biomechanics, sexual selection, social selection or species recognition? J. Zool. 283, 3–17 (2011).

  36. 36.

    Higashi, M., Takimoto, G. & Yamamura, N. Sympatric speciation by sexual selection. Nature 402, 523–526 (1999).

  37. 37.

    Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation.Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).

  38. 38.

    EarthByte Project. GPlates 1.5. (2015).

  39. 39.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna 2016).

  40. 40.

    Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–348 (1997).

  41. 41.

    Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

  42. 42.

    Lawing, A. M. & Matzke, N. J. Conservation paleobiology needs phylogenetic methods. Ecography 37, 1109–1122 (2014).

  43. 43.

    Walimbe, A. M., Lotankar, M., Cecilia, D. & Cherian, S. S. Global phylogeography of Dengue type 1 and 2 viruses reveals the role of India. Infect. Genet. Evol. 22, 30–39 (2014).

  44. 44.

    Kaliszewska, Z. A. et al. When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evol. Int. J. Org. Evol. 69, 571–588 (2015).

  45. 45.

    Wang, N., Kimball, R. T., Braun, E. L., Liang, B. & Zhang, Z. Ancestral range reconstruction of Galliformes: the effects of topology and taxon sampling. J. Biogeogr. 44, 122–135 (2017).

  46. 46.

    Fernando, S. W., Peterson, A. T. & Li, S.-H. Reconstructing the geographic origin of the New World jays. Neotrop. Biodivers. 3, 80–92 (2017).

  47. 47.

    Lemmon, A. R. & Lemmon, E. M. A likelihood framework for estimating phylogeographic history on a continuous landscape. Syst. Biol. 57, 544–561 (2008).

  48. 48.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

  49. 49.

    Walker, R. S. & Ribeiro, L. A. Bayesian phylogeography of the Arawak expansion in lowland South America. Proc. R. Soc. B 278, 2562–2567 (2011).

  50. 50.

    Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012).

  51. 51.

    Grollemund, R. et al. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl. Acad. Sci. USA 112, 13296–13301 (2015).

  52. 52.

    Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).

  53. 53.

    Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J. Global Positioning System: Theory and Practice (Springer, Vienna, 1992).

  54. 54.

    Jones, A. Where in the World are We? Version 1.7 (Department for Environment, Heritage and Aboriginal Affairs, with the South Australian Spatial Information Committee, Government of South Australia, Adelaide, South Australia, 1999).

  55. 55.

    Quintero, I., Keil, P., Jetz, W. & Crawford, F. W. Historical biogeography using species geographical ranges. Syst. Biol. 64, 1059–1073 (2015).

  56. 56.

    Elliot, M. G. & Mooers, A. O. Inferring ancestral states without assuming neutrality or gradualism using a stable model of continuous character evolution. Evol. Biol. 14, 226 (2014).

  57. 57.

    Hijmans, R. geosphere: Spherical Trigonometry. R package v.1.3-11. (2014).

  58. 58.

    Dunhill, A. M., Bestwick, J., Narey, H. & Sciberras, J. Dinosaur biogeographical structure and Mesozoic continental fragmentation: a network-based approach. J. Biogeogr. 43, 1691–1704 (2016).

  59. 59.

    Alroy, J. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53, 1211–1235 (2010).

  60. 60.

    Barrett, P. M., McGowan, A. J. & Page, V. Dinosaur diversity and the rock record. Proc. R. Soc. B 276, 2667–2674 (2009).

  61. 61.

    Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J. & Carrano, M. T. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. 358, 209–240 (2011).

  62. 62.

    Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 2, 235 (1997).

  63. 63.

    JMP v.7 (SAS Institute, Cary, NC, 2007).

Download references


We thank M. Benton and M. Sakamoto for help with classifying dinosaur diet and gait, and J. Czaplewski for help with obtaining the palaeomaps. We are also grateful to J. Baker, H. Ferguson-Gow, J. Avaria-Llautureo, S. Branford, L. Johnson, I. Siveroni and M. Pagel for helpful discussion. This work is supported by The Leverhulme Trust (RPG-2013-185 and RPG-2017-071) and the BBSRC (BB/L018594/1).

Author information


  1. School of Biological Sciences, University of Reading, Reading, UK

    • Ciara O’Donovan
    • , Andrew Meade
    •  & Chris Venditti


  1. Search for Ciara O’Donovan in:

  2. Search for Andrew Meade in:

  3. Search for Chris Venditti in:


All authors contributed to all aspects of this work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Chris Venditti.

Supplementary information

  1. Supplementary Table 1

    Table containing the diet and gait classifications for each dinosaur species (n = 595) used in the phylogenetic regression analyses testing factors determining dinosaur movement

  2. Life Sciences Reporting Summary

  3. Supplementary Figures

    Supplementary Figure 1. The importance of using coordinates that are in both the right geographic and temporal context. Supplementary Figure 2. A representation of the relationships between example species A and B. Supplementary Figure 3. The importance of including all of the available fossil occurrences as data at the tips of the phylogeny used to estimate ancestral locations (green squares).