Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptation of Plasmodium falciparum to its transmission environment

This article has been updated

Abstract

Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G—the transcription factor that initiates reproduction—increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1—two histone deacetylases that epigenetically regulate the parasite’s replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite’s adaptive regulatory architecture has identified new potential molecular targets for malaria control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and analysis.
Fig. 2: Full-genome gene correlation network.
Fig. 3: Epigenetic and translation machinery networks.
Fig. 4: Enrichment of organellar translation genes in downregulated H–L genes and sexual-stage network modules.
Fig. 5: Selection for environment-specific levels of replication and reproduction under two different trade-off models.

Change history

  • 26 August 2020

    In the HTML version of the article, the hyperlink for Supplementary Data 4 incorrectly directed to Supplementary Data 6. The PDF version was unaffected. This has now been corrected.

References

  1. Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, New York, 1992).

  2. Reece, S. E., Ramiro, R. S. & Nussey, D. H. Plastic parasites: sophisticated strategies for survival and reproduction? Evol. Appl. 2, 11–23 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Mideo, N. & Day, T. On the evolution of reproductive restraint in malaria. Proc. R. Soc. B 275, 1217–1224 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. Imperfect vaccines and the evolution of parasite virulence. Nature 414, 751–755 (2001).

    CAS  PubMed  Google Scholar 

  5. Noor, A. M. et al. The changing risk of Plasmodium falciparum malaria infection in Africa: 2000–10: a spatial and temporal analysis of transmission intensity. Lancet 383, 1739–1747 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Kirk, K. & Lehane, A. M. Membrane transport in the malaria parasite and its host erythrocyte. Biochem. J. 457, 1–18 (2014).

    CAS  PubMed  Google Scholar 

  7. El Bissati, K. et al. The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 103, 9286–9291 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Saliba, K. J. & Kirk, K. pH regulation in the intracellular malaria parasite, Plasmodium falciparum. H(+) extrusion via a V-type H(+)-ATPase. J. Biol. Chem. 274, 33213–33219 (1999).

    CAS  PubMed  Google Scholar 

  9. Silvestrini, F. et al. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteom. 9, 1437–1448 (2010).

    CAS  Google Scholar 

  10. Kafsack, B. F. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Painter, H. J., Campbell, T. L. & Llinas, M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol. Biochem. Parasitol. 176, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  12. Coleman, B. I. et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16, 177–186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, J. D. et al. Switches in expression of Plasmodium falciparumvar genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Recker, M. et al. Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature 429, 555–558 (2004).

    CAS  PubMed  Google Scholar 

  15. Zhang, M., Joyce, B. R., Sullivan, W. J. Jr & Nussenzweig, V. Translational control in Plasmodium and Toxoplasma parasites. Eukaryot. Cell 12, 161–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheiner, L., Vaidya, A. B. & McFadden, G. I. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr. Opin. Microbiol. 16, 452–458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson, R. J. M., Gardner, M. J., Feagin, J. E. & Williamson, D. H. Have malaria parasites three genomes? Parasitol. Today 7, 134–136 (1991).

    CAS  PubMed  Google Scholar 

  18. Chaubey, S., Kumar, A., Singh, D. & Habib, S. The apicoplast of Plasmodium falciparum is translationally active. Mol. Microbiol. 56, 81–89 (2005).

    CAS  PubMed  Google Scholar 

  19. Pino, P. et al. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met formylation in Apicomplexa. Mol. Microbiol. 76, 706–718 (2010).

    CAS  PubMed  Google Scholar 

  20. Yeh, E. & DeRisi, J. L. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 9, e1001138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Painter, H. J., Morrisey, J. M., Mather, M. W. & Vaidya, A. B. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446, 88–91 (2007).

    CAS  PubMed  Google Scholar 

  22. Ke, H. et al. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J. Biol. Chem. 289, 34827–34837 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Van Schaijk, B. C. et al. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes. Eukaryot. Cell 13, 550–559 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Wiley, J. D. et al. Isoprenoid precursor biosynthesis is the essential metabolic role of the apicoplast during gametocytogenesis in Plasmodium falciparum. Eukaryot. Cell 14, 128–139 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Gisselberg, J. E., Dellibovi-Ragheb, T. A., Matthews, K. A., Bosch, G. & Prigge, S. T. The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites. PLoS Pathog. 9, e1003655 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacot, D., Waller, R. F., Soldati-Favre, D., MacPherson, D. A. & MacRae, J. I. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 32, 56–70 (2016).

    CAS  PubMed  Google Scholar 

  27. Lang-Unnasch, N. & Murphy, A. D. Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. Annu. Rev. Microbiol. 52, 561–590 (1998).

    CAS  PubMed  Google Scholar 

  28. MacRae, J. I. et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 11, 67 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Delves, M. et al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med. 9, e1001169 (2012).

    PubMed  PubMed Central  Google Scholar 

  30. Goodman, C. D. et al. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science 352, 349–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gunderson, J. H. et al. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238, 933–937 (1987).

    CAS  PubMed  Google Scholar 

  32. Démbéle, L. et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat. Med. 20, 307–312 (2014).

    PubMed  Google Scholar 

  33. Mancio-Silva, L., Lopez-Rubio, J. J., Claes, A. & Scherf, A. Sir2a regulates rDNA transcription and multiplication rate in the human malaria parasite Plasmodium falciparum. Nat. Commun. 4, 1530 (2013).

    PubMed  Google Scholar 

  34. Zhang, M. et al. PK4, a eukaryotic initiation factor 2alpha(eIF2alpha) kinase, is essential for the development of the erythrocytic cycle of Plasmodium. Proc. Natl Acad. Sci. USA 109, 3956–3961 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, M. et al. The Plasmodium eukaryotic initiation factor-2alpha kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. J. Exp. Med. 207, 1465–1474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Babbitt, S. E. et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc. Natl Acad. Sci. USA 109, E3278–E3287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bunnik, E. M. et al. Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum. Genome Biol. 14, R128 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Caro, F., Ahyong, V., Betegon, M. & DeRisi, J. L. Genome-wide regulatory dynamics of translation in the Plasmodium falciparum asexual blood stages. eLife 3, e04106 (2014).

    PubMed Central  Google Scholar 

  39. Beilsten-Edmands, V. et al. eIF2 interactions with initiator tRNA and eIF2B are regulated by post-translational modifications and conformational dynamics. Cell Discov. 1, 15020 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Greischar, M. A., Mideo, N., Read, A. F. & Bjornstad, O. N. Predicting optimal transmission investment in malaria parasites. Evolution 70, 1542–1558 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Mackinnon, M. J. & Read, A. F. Virulence in malaria: an evolutionary viewpoint. Phil. Trans. R. Soc. Lond. B 359, 965–986 (2004).

    PubMed  PubMed Central  Google Scholar 

  42. Mackinnon, M. J. & Read, A. F. Immunity promotes virulence evolution in a malaria model. PLoS Biol. 2, E230 (2004).

    PubMed  PubMed Central  Google Scholar 

  43. Mackinnon, M. J. & Marsh, K. The selection landscape of malaria parasites. Science 328, 866–871 (2010).

    CAS  PubMed  Google Scholar 

  44. Greischar, M. A., Mideo, N., Read, A. F. & Bjornstad, O. N. Quantifying transmission investment in malaria parasites. PLoS Comput. Biol. 12, e1004718 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Buckling, A. G. L., Crooks, L. & Read, A. F. Plasmodium chabaudi: effect of antimalairal drugs on gametocytogenesis. Exp. Parasitol. 93, 45–54 (1999).

    CAS  PubMed  Google Scholar 

  46. Reece, S. E., Duncan, A. B., West, S. A. & Read, A. F. Host cell preference and variable transmission strategies in malaria parasites. Proc. R. Soc. B 272, 511–517 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. Ke, H. et al. Variation among Plasmodium falciparum strains in their reliance on mitochondrial electron transport chain function. Eukaryot. Cell 10, 1053–1061 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Daily, J. P. et al. In vivo transcriptional profiling of Plasmodium falciparum. Malar. J. 3, 30 (2004).

    PubMed  PubMed Central  Google Scholar 

  49. Mobegi, V. A. et al. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol. Biol. Evol. 31, 1490–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Taylor, L. H. & Read, A. F. Why so few transmission stages? Reproductive restraint by malaria parasites. Parasitol. Today 13, 135–140 (1997).

    CAS  PubMed  Google Scholar 

  51. Mackinnon, M. J. et al. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog. 5, e1000644 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, 85–100 (2003).

    CAS  Google Scholar 

  53. Mok, S. et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genom. 12, 391 (2011).

    CAS  Google Scholar 

  54. Smyth, G. K. in Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds Gentleman, R. et al.) 397–420 (Springer, New York, 2005).

  55. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

  56. Glynn, E. F., Chen, J. & Mushegian, A. R. Detecting periodic patterns in unevenly spaced gene expression time series using Lomb–Scargle periodograms. Bioinformatics 22, 310–316 (2006).

    CAS  PubMed  Google Scholar 

  57. Smyth, G. K., Michaud, J. & Scott, H. The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075 (2005).

    CAS  PubMed  Google Scholar 

  58. Lopez-Barragan, M. J. et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genom. 12, 587 (2011).

    CAS  Google Scholar 

  59. Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Google Scholar 

  60. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Langfelder, P. & Horvath, S. Tutorials for the WGCNA Package; https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html.

  62. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Systems 1695, 1–9 (2006).

  63. Vembar, S. S., Macpherson, C. R., Sismeiro, O., Coppee, J. Y. & Scherf, A. The PfAlba1 RNA-binding protein is an important regulator of translational timing in Plasmodium falciparum blood stages. Genome Biol. 16, 212 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Muller, K., Matuschewski, K. & Silvie, O. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. PLoS ONE 6, e19860 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. Miao, J. et al. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J. Cell Sci. 123, 1039–1049 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is published with the permission of the director of the Kenya Medical Research Institute (KEMRI). The authors are grateful to the study participants and the parasite culture laboratory at the KEMRI–Wellcome Trust Research Programme, Kilifi, Kenya. We also thank G. McFadden, M. Greischar and A. Read for helpful comments and H. Ginsburg for assistance with the gene sets for the enrichment tests. This work was supported by the Wellcome Trust (grant numbers 088634 to M.J.M. and 092741 and 077176 to K.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.K.R., M.A.N., J.J.S., J.M.N., M.M.E., A.S.A., M.M.K. and M.J.M. collected the data. Z.B. and S.M. provided the microarray materials. I.M.E., J.N.W., K.M. and M.J.M. organized the field work. M.J.M. and M.K.R. prepared the manuscript.

Corresponding author

Correspondence to Margaret J. Mackinnon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9; Supplementary Tables 1, 3 and 5; Legends for Supplementary Figures 10–11 and Supplementary Tables 2, 4, 6, 7 and 8; Supplementary references.

Life Sciences Reporting Summary

Supplementary Table 2

Genes showing significant differences in expression level between high (H) and low (L) transmission populations.

Supplementary Table 4

Summary of methods for adjusting for host, parasite and gene properties in the analyses.

Supplementary Table 6

Summary of network module properties.

Supplementary Table 7

Gene sets used for functional.

Supplementary Table 8

Abbreviated names for epigenetic and translational machinery genes used in the analyses.

Supplementary Figure 10

H–L differentiation among transport genes.

Supplementary Figure 11

H–L differentiation among trafficking genes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rono, M.K., Nyonda, M.A., Simam, J.J. et al. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol 2, 377–387 (2018). https://doi.org/10.1038/s41559-017-0419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0419-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing