Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability

Abstract

Most seafloor communities at depths below the photosynthesis zone rely on food that sinks through the water column. However, the nature and strength of this pelagic–benthic coupling and its influence on the structure and diversity of seafloor communities is unclear, especially around Antarctica where ecological data are sparse. Here we show that the strength of pelagic–benthic coupling along the East Antarctic shelf depends on both physical processes and the types of benthic organisms considered. In an approach based on modelling food availability, we combine remotely sensed sea-surface chlorophyll-a, a regional ocean model and diatom abundances from sediment grabs with particle tracking and show that fluctuating seabed currents are crucial in the redistribution of surface productivity at the seafloor. The estimated availability of suspended food near the seafloor correlates strongly with the abundance of benthic suspension feeders, while the deposition of food particles correlates with decreasing suspension feeder richness and more abundant deposit feeders. The modelling framework, which can be modified for other regions, has broad applications in conservation and management, as it enables spatial predictions of key components of seafloor biodiversity over vast regions around Antarctica.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview graphic summarizing general processes involved in the redistribution of surface-derived food in Antarctic waters and the link to the seafloor community.
Fig. 2: Study area showing sample locations, bathymetry57 with selected contour lines, coastline and major glacial features such as the Mertz Glacier Tongue on the eastern margin of the map.
Fig. 3: Results of the particle tracking models.
Fig. 4: Relation between faunal abundances and richness from benthic images and environmental variables.
Fig. 5: Relationship between suspension feeder cover and numbers of species observed.

References

  1. Watling, L., Guinotte, J., Clark, M. R. & Smith, C. R. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111, 91–112 (2013).

    Article  Google Scholar 

  2. Suess, E. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288, 260–263 1980).

    Article  CAS  Google Scholar 

  3. Graf, G. Benthic–pelagic coupling in a deep-sea benthic community. Nature 341, 437–439 (1989).

    Article  Google Scholar 

  4. Dayton, P. K. & Oliver, J. S. Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197, 55–58 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Duineveld, G., Lavaleye, M. & Berghuis, E. Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar. Ecol. Prog. Ser. 277, 13–23 (2004).

    Article  Google Scholar 

  6. Ruhl, H. A. et al. Links between deep-sea respiration and community dynamics. Ecology 95, 1651–1662 (2014).

    Article  PubMed  Google Scholar 

  7. Wei, C. L. et al. Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. Mar. Ecol. Prog. Ser. 399, 1–14 (2010).

    Article  CAS  Google Scholar 

  8. Griffiths, H. J., Barnes, D. K. A. & Linse, K. Towards a generalized biogeography of the Southern Ocean benthos. J. Biogeogr. 36, 162–177 (2009).

    Article  Google Scholar 

  9. De Broyer, C. Biogeographic Atlas of the Southern Ocean (Scientific Committee on Antarctic Research, Cambridge, 2014).

  10. Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, C. R., Mincks, S. & DeMaster, D. J. A synthesis of bentho–pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res. II 53, 875–894 (2006).

    Article  Google Scholar 

  12. Lins, L., da Silva, M. C., Hauquier, F., Esteves, A. M. & Vanreusel, A. Nematode community composition and feeding shaped by contrasting productivity regimes in the Southern Ocean. Prog. Oceanogr. 134, 356–369 (2015).

    Article  Google Scholar 

  13. Learman, D. R. et al. Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure. Front. Microbiol. 7, 284 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barry, J. P., Grebmeier, J. M., Smith, J. & Dunbar, R. B. in Biogeochemistry of the Ross Sea Vol. 78 (eds Ditullio, G. R. & Dunbar, R. B.) 327–353 (American Geophysical Union, Washington, 2003).

  15. Obermüller, B. E., Morley, S. A., Barnes, D. K. & Peck, L. S. Seasonal physiology and ecology of Antarctic marine benthos predators and scavengers. Mar. Ecol. Prog. Ser. 415, 109–126 (2010).

    Article  Google Scholar 

  16. Smith, C. R., Mincks, S. & DeMaster, D. J. The FOODBANCS project: introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep-Sea Res. II 55, 2404–2414 (2008).

    Article  CAS  Google Scholar 

  17. Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).

    Article  CAS  Google Scholar 

  18. Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).

  19. Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28, 181–196 (2014).

    Article  CAS  Google Scholar 

  20. Jahnke, R. A., Reimers, C. E. & Craven, D. B. Intensification of recycling of organic matter at the sea floor near ocean margins. Nature 348, 50–54 (1990).

    Article  CAS  Google Scholar 

  21. Lampitt, R. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. A 32, 885–897 (1985).

    Article  Google Scholar 

  22. MODIS-Aqua Level 3 Global Daily Mapped 4 km Chlorophyll a. Ver. 6. PO.DAAC, CA, USA (Ocean Biology Processing Group, 2003).

  23. Cougnon, E. A., Galton-Fenzi, B. K., Meijers, A. J. S. & Legresy, B. Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992–2007). J. Geophys. Res. Oceans 118, 5858–5872 (2013).

    Article  Google Scholar 

  24. McCave, I. N. & Swift, S. A. A physical model for the rate of deposition of fine-grained sediments in the deep sea. Geol. Soc. Am. Bull. 87, 541–546 (1976).

    Article  Google Scholar 

  25. Rigual-Hernández, A. S., Trull, T. W., Bray, S. G., Closset, I. & Armand, L. K. Seasonal dynamics in diatom and particulate export fluxes to the deep sea in the Australian sector of the southern Antarctic zone. J. Mar. Syst. 142, 62–74 (2015).

    Article  Google Scholar 

  26. Beans, C. et al. A study of the diatom-dominated microplankton summer assemblages in coastal waters from Terre Adélie to the Mertz Glacier, East Antarctica (139° E–145° E). Polar Biol. 31, 1101–1117 (2008).

    Article  Google Scholar 

  27. Laurenceau-Cornec, E. C., Trull, T. W., Davies, D. M., De La Rocha, C. L. & Blain, S. Phytoplankton morphology controls on marine snow sinking velocity. Mar. Ecol. Prog. Ser. 520, 35–56 (2015).

    Article  Google Scholar 

  28. Arrigo, K. R. & van Dijken, G. L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res. Oceans 108, 3271 (2003).

  29. Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Oceans 120, 5545–5565 (2015).

    Article  Google Scholar 

  30. Beaman, R. J. & Harris, P. T. Seafloor morphology and acoustic facies of the George V Land shelf. Deep-Sea Res. II 50, 1343–1355 (2003).

    Article  Google Scholar 

  31. Canals, M. et al. Flushing submarine canyons. Nature 444, 354–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Harris, P. T. et al. Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Mar. Geol. 179, 1–8 (2001).

    Article  Google Scholar 

  33. Caburlotto, A., De Santis, L., Zanolla, C., Camerlenghi, A. & Dix, J. New insights into Quaternary glacial dynamic changes on the George V Land continental margin (East Antarctica). Quat. Sci. Rev. 25, 3029–3049 (2006).

    Article  Google Scholar 

  34. Gutt, J., Griffiths, H. J. & Jones, C. D. Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodivers. 43, 481–487 (2013).

    Article  Google Scholar 

  35. Barry, J. P. & Dayton, P. K. Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biol. 8, 367–376 (1988).

    Article  Google Scholar 

  36. Hosie, G. et al. CEAMARC, the Collaborative East Antarctic Marine Census for the Census of Antarctic Marine Life (IPY # 53): an overview. Polar Sci. 5, 75–87 (2011).

    Article  Google Scholar 

  37. Post, A. L., O’Brien, P. E., Beaman, R. J., Riddle, M. J. & De Santis, L. Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarct. Sci. 22, 371–378 (2010).

    Article  Google Scholar 

  38. Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312, 543–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Cummings, V. J., Thrush, S. F., Chiantore, M., Hewitt, J. E. & Cattaneo-ZVietti, R. Macrobenthic communities of the north-western Ross Sea shelf: links to depth, sediment characteristics and latitude. Antarct. Sci. 22, 793–804 (2010).

    Article  Google Scholar 

  40. Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep-Sea Res. I 98, 102–114 (2015).

    Article  Google Scholar 

  41. Goutx, M. et al. Composition and degradation of marine particles with different settling velocities in the northwestern Mediterranean Sea. Limnol. Oceanogr. 52, 1645–1664 (2007).

    Article  Google Scholar 

  42. Lacharité, M. & Metaxas, A. Hard substrate in the deep ocean: how sediment features influence epibenthic megafauna on the eastern Canadian margin. Deep-Sea Res. I 126, 50–61 (2017).

    Article  Google Scholar 

  43. Saenz, B. T. & Arrigo, K. R. Annual primary production in Antarctic sea ice during 2005–2006 from a sea ice state estimate. J. Geophys. Res. Oceans 119, 3645–3678 (2014).

    Article  Google Scholar 

  44. Renaud, P. E., Morata, N., Carroll, M. L., Denisenko, S. G. & Reigstad, M. Pelagic–benthic coupling in the western Barents Sea: processes and time scales. Deep-Sea Res. II 55, 2372–2380 (2008).

    Article  CAS  Google Scholar 

  45. Mccoy, F. W. in Marine Geological and Geophysical Atlas of the Circum-Antarctic to 30° S (ed. Hayes, D. E.) 37–46 (American Geophysical Union, Washington, 1991).

  46. Post, A. L. et al. in Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 46–64 (Scientific Committee on Antarctic Research, Cambridge, 2014).

  47. Dutkiewicz, A., Muller, R. D., O’Callaghan, S. & Jonasson, H. Census of seafloor sediments in the world’s ocean. Geology 43, 795–798 (2015).

    Article  CAS  Google Scholar 

  48. Peck, L. S., Barnes, D. K., Cook, A. J., Fleming, A. H. & Clarke, A. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob. Change Biol. 16, 2614–2623 (2010).

    Article  Google Scholar 

  49. Massom, R. et al. Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica. Ann. Glaciol. 33, 391–398 (2001).

    Article  Google Scholar 

  50. Sambrotto, R. N. et al. Summer plankton production and nutrient consumption patterns in the Mertz Glacier region of East Antarctica. Deep-Sea Res. II 50, 1393–1414 (2003).

    Article  CAS  Google Scholar 

  51. Armand, L. K., Crosta, X., Romero, O. & Pichon, J.-J. The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeogr. Palaeoclimatol. Palaeoecol. 223, 93–126 (2005).

    Article  Google Scholar 

  52. Johnson, R., Strutton, P. G., Wright, S. W., McMinn, A. & Meiners, K. M. Three improved satellite chlorophyll algorithms for the Southern Ocean. J. Geophys. Res. Oceans 118, 3694–3703 (2013).

    Article  CAS  Google Scholar 

  53. Huang, K., Ducklow, H., Vernet, M., Cassar, N. & Bender, M. L. Export production and its regulating factors in the West Antarctica Peninsula region of the Southern Ocean. Glob. Biogeochem. Cycles 26, GB2005 (2012).

  54. Galton-Fenzi, B. K., Hunter, J. R., Coleman, R., Marsland, S. J. & Warner, R. C. Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res. Oceans 117, C09031 (2012).

  55. Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. Online 9, 347–404 (2005).

    Article  Google Scholar 

  56. Timmermann, R. et al. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data 2, 261–273 (2010).

    Article  Google Scholar 

  57. Beaman, R. J., O’Brien, P. E., Post, A. L. & De Santis, L. A new high-resolution bathymetry model for the Terre Adelie and George V continental margin, East Antarctica. Antarct. Sci. 23, 95–103 (2011).

    Article  Google Scholar 

  58. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

  59. raster: Geographic Data Analysis and Modeling R Package Version 2.3-40 (R Foundation for Statistical Computing, Vienna, 2015).

  60. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files R Package Version 1.12 (R Foundation for Statistical Computing, Vienna, 2014).

  61. Elseberg, J., Magnenat, S., Siegwart, R. & Nüchter, A. Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. JOSER 3, 2–12 (2012).

    Google Scholar 

  62. Brown, P. E. Model-based geostatistics the easy way. J. Stat. Softw. 63, 1–24 (2015).

    Article  Google Scholar 

  63. Baddeley, A. & Turner, R. spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw. 12, 1–42 (2005).

    Article  Google Scholar 

  64. Jansen, J. & Sumner, M. D. ptrackr: R-package for tracking individual particles in two- and three-dimensional space. Zenodo https://doi.org/10.5281/zenodo.803493 (2017).

  65. Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K. & Arango, H. G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 34, 1284–1306 (2008).

    Article  Google Scholar 

  66. Van Ierland, E. & Peperzak, L. Separation of marine seston and density determination of marine diatoms by density gradient centrifugation. J. Plankton Res. 6, 29–44 (1984).

    Article  Google Scholar 

  67. Crosta, X., Crespin, J., Billy, I. & Ther, O. Major factors controlling Holocene δ13Corg changes in a seasonal sea-ice environment, Adélie Land, East Antarctica. Glob. Biogeochem. Cycles 19, GB4029 (2005).

  68. Crosta, X., Debret, M., Denis, D., Courty, M. A. & Ther, O. Holocene long- and short-term climate changes off Adélie Land, East Antarctica. Geochem. Geophys. Geosyst. 8, Q11009 (2007).

  69. Denis, D. et al. Holocene productivity changes off Adélie Land (East Antarctica). Paleoceanography 24, PA3207 (2009).

  70. Rathburn, A. E., Pichon, J. J., Ayress, M. A. & DeDeckker, P. Microfossil and stable-isotope evidence for changes in Late Holocene paleoproductivity and paleoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 131, 485–510 (1997).

    Article  Google Scholar 

  71. Tomas, C. R. (ed.) Identifying Marine Phytoplankton (Academic, San Diego, 1997).

  72. Armand, L. K. & Zielinski, U. Diatom species of the genus Rhizosolenia from Southern Ocean sediments: distribution and taxonomic notes. Diatom Res. 16, 259–294 (2001).

    Article  Google Scholar 

  73. Domack, E. & Anderson, J. Marine Geology of the George V Continental Margin: Combined Results of Deep Freeze 79 and the 1911–14 Australasian Expedition (Cambridge Univ. Press, Cambridge, 1983).

  74. Post, A. L., Beaman, R. J., O’Brien, P. E., Eleaume, M. & Riddle, M. J. Community structure and benthic habitats across the George V shelf, East Antarctica: trends through space and time. Deep-Sea Res. II 58, 105–118 (2011).

    Article  Google Scholar 

  75. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, New York, 2002).

  76. Tarr, G., Müller, S. & Welsh, A. mplot: An R package for graphical model stability and variable selection procedures. Preprint at https://arxiv.org/abs/1509.07583 (2015).

Download references

Acknowledgements

We thank B. Raymond, S. Wotherspoon and S. Foster for their ideas and support in the analysis of the data, E. Cougnon for her help with the ROMS, and S. Jansen and Jeroen Jansen for their help designing Fig. 1. C. Thun and B. Poignant (Geoscience Australia) prepared samples for the diatom analysis which was funded by a Joint US NSF East Asia and Pacific Summer Institutes and Australian Academy of Science Summer Fellowship at Macquarie University to J.P.W. C. Robineau (supported by Institut Polaire Français Paul Émile Victor (IPEV) and the Antarctic program IPEV 1124 REVOLTA) and J. Delaplanque-Lasserre (supported by Muséum national d’Histoire naturelle (MNHN)) scored the benthic images. We thank the captain, crew and scientific party of the RV Aurora Australis who obtained the samples during the CEAMARC program as part of the IPY #53 Census of Antarctic Marine Life program, with particular thanks to G. Hosie (CEMARC program leader) and M. Riddle (chief scientist on board the RV Aurora Australis). Coastline and glacial features for the figures are taken from the Antarctic Digital Database version 5. J.J. is supported by a Tasmanian Graduate Research Scholarship and a QAS Top-Up scholarship. A.L.P. publishes with the permission of the Chief Executive Officer, Geoscience Australia. This work was completed as part of Australian Antarctic Science project 4124.

Author information

Authors and Affiliations

Authors

Contributions

J.J., N.A.H., C.R.J., P.K.D., A.L.P. and B.K.G.-F. conceived and designed the study. J.J., M.D.S. and J.M. developed the software. J.J., N.A.H., C.R.J., P.K.D., J.M., M.P.E., L.K.A. and J.P.W. analysed the data. J.J. prepared all figures and designed the infographic. J.J., N.A.H. and C.R.J. wrote the paper with contributions from all other authors.

Corresponding author

Correspondence to Jan Jansen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–4, Supplementary References.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansen, J., Hill, N.A., Dunstan, P.K. et al. Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nat Ecol Evol 2, 71–80 (2018). https://doi.org/10.1038/s41559-017-0392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0392-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing