Article

Genomic insights into the ancient spread of Lyme disease across North America

  • Nature Ecology & Evolutionvolume 1pages15691576 (2017)
  • doi:10.1038/s41559-017-0282-8
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Lyme disease is the most prevalent vector-borne disease in North America and continues to spread. The disease was first clinically described in the 1970s in Lyme, Connecticut, but the origins and history of spread of the Lyme disease bacteria, Borrelia burgdorferi sensu stricto (s.s.), are unknown. To explore the evolutionary history of B. burgdorferi in North America, we collected ticks from across the USA and southern Canada from 1984 to 2013 and sequenced the, to our knowledge, largest collection of 146 B. burgdorferi s.s. genomes. Here, we show that B. burgdorferi s.s. has a complex evolutionary history with previously undocumented levels of migration. Diversity is ancient and geographically widespread, well pre-dating the Lyme disease epidemic of the past ~40 years, as well as the Last Glacial Maximum ~20,000 years ago. This means the recent emergence of human Lyme disease probably reflects ecological change—climate change and land use changes over the past century—rather than evolutionary change of the bacterium.

  • Subscribe to Nature Ecology & Evolution for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Steere, A., Coburn, J. & Glickstein, L. The emergence of Lyme disease. J. Clin. Invest. 113, 1093–1101 (2004).

  2. 2.

    Steere, A. C. C., Malawista, S. E., Snydman, D. R. & Andiman, W. A. A cluster of arthritis in children and adults in Lyme, Connecticut. Arthritis Rheum. 20, 7–17 (1977).

  3. 3.

    Steere, A. C. & Malawista, S. E. Cases of Lyme disease in the United States: locations correlated with distribution of Ixodes dammini. Ann. Intern. Med. 91, 730–733 (1979).

  4. 4.

    Walter, K. S. et al. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes. Proc. R. Soc. B 283, S301–S327 (2016).

  5. 5.

    How Many People Get Lyme Disease? https://www.cdc.gov/lyme/stats/humancases.html (Centers for Disease Control and Prevention, 2015).

  6. 6.

    Spielman, A. & Wilson, M. Ecology of Ixodes Dammini-borne human babesiosis and Lyme disease. Annu. Rev. Entomol. 30, 439–460 (1985).

  7. 7.

    Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455, 661–664 (2008).

  8. 8.

    Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

  9. 9.

    Gray, R. R. et al. Testing spatiotemporal hypothesis of bacterial evolution using methicillin-resistant Staphylococcus aureus ST239 genome-wide data within a bayesian framework. Mol. Biol. Evol. 28, 1593–1603 (2011).

  10. 10.

    Biek, R. et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 8, e1003008 (2012).

  11. 11.

    Carpi, G. et al. Whole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi. BMC Genomics 16, 434 (2015).

  12. 12.

    Xu, G. et al. Detection of heterogeneity of Borrelia burgdorferi in Ixodes ticks by culture-dependent and culture-independent methods. J. Clin. Microbiol. 51, 615–617 (2013).

  13. 13.

    Humphrey, P. T., Caporale, D. A. & Brisson, D. Uncoordinated phylogeography of Borrelia burgdorferi and its tick vector, Ixodes scapularis. Evolution 64, 2653–2663 (2010).

  14. 14.

    Qiu, W.-G., Dykhuizen, D. E., Acosta, M. S. & Luft, B. J. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics 160, 833–849 (2002).

  15. 15.

    Hoen, A. G. A. et al. Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc. Natl Acad. Sci. USA 106, 15013–15018 (2009).

  16. 16.

    Margos, G. et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 105, 8730–8735 (2008).

  17. 17.

    Mechai, S., Margos, G., Feil, E. J., Lindsay, L. R. & Ogden, N. H. Complex population structure of Borrelia burgdorferi in southeastern and south central Canada as revealed by phylogeographic analysis. Appl. Environ. Microbiol. 81, 1309–1318 (2015).

  18. 18.

    Haven, J. et al. Pervasive recombination and sympatric genome diversification driven by frequency-dependent selection in Borrelia burgdorferi, the Lyme disease bacterium. Genetics 189, 951–966 (2011).

  19. 19.

    Mongodin, E. E. F. et al. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics 14, 693 (2013).

  20. 20.

    Marshall, W. F. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Peromyscus leucopus. J. Infect. Dis. 170, 1027–1032 (1994).

  21. 21.

    Persing, D. H. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks. Science 249, 1420–1423 (1990).

  22. 22.

    Casjens, S. R. et al. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J. Bacteriol. 193, 1489–1490 (2011).

  23. 23.

    Casjens, S. R. et al. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics 18, 165 (2017).

  24. 24.

    Fraser, C. M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997).

  25. 25.

    Qiu, W.-G. et al. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc. Natl Acad. Sci. USA 101, 14150–14155 (2004).

  26. 26.

    Schwan, T. G., Piesman, J., Golde, W. T., Dolan, M. C. & Rosa, P. A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc. Natl Acad. Sci. USA 92, 2909–2913 (1995).

  27. 27.

    Barbour, A. A. G. & Travinsky, B. Evolution and distribution of the ospC gene, a transferable serotype determinant of Borrelia burgdorferi. mBio 1, e00153–10 (2010).

  28. 28.

    Wormser, G. P. et al. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J. Infect. Dis. 198, 1358–1364 (2008).

  29. 29.

    Jewett, M. W. et al. GuaA and GuaB are essential for Borrelia burgdorferi survival in the tick-mouse infection cycle. J. Bacteriol. 191, 6231–6241 (2009).

  30. 30.

    Shi, Y., Xu, Q., McShan, K. & Fang, T. L. Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect. Immun. 76, 1239–1246 (2008).

  31. 31.

    Xu, H. et al. Characterization of the highly regulated antigen BBA05 in the enzootic cycle of Borrelia burgdorferi. Infect. Immun. 78, 100–107 (2010).

  32. 32.

    Brown, R. N. & Lane, R. S. Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 256, 1439–1442 (1992).

  33. 33.

    Gulia-Nuss, M. et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7, 10507 (2016).

  34. 34.

    Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis, in North America. Evolution 69, 1678–1689 (2015).

  35. 35.

    Carpi, G. et al. Babesia microti from humans and ticks hold a genomic signature of strong population structure in the United States. BMC Genomics 17, 888 (2016).

  36. 36.

    Diuk-Wasser, M. A. et al. Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Glob. Ecol. Biogeogr. 19, 504–514 (2010).

  37. 37.

    Kugeler, K. J., Farley, G. M., Forrester, J. D. & Mead, P. S. Geographic distribution and expansion of human Lyme disease, United States. Emerg. Infect. Dis. 21, 1455–1457 (2015).

  38. 38.

    Qiu, W.-G. et al. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 14, 1097–1104 (2008).

  39. 39.

    Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).

  40. 40.

    Drummond, A., Pybus, O. G. & Rambaut, A. Inference of viral evolutionary rates from molecular sequences. Adv. Parasitol. 54, 331–358 (2003).

  41. 41.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

  42. 42.

    Funk, D. J., Wernegreen, J. J. & Moran, N. A. Intraspecific variation in symbiont genomes: bottlenecks and the aphid–Buchnera association. Genetics 157, 477–489 (2001).

  43. 43.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

  44. 44.

    Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

  45. 45.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

  46. 46.

    Walter, K. S. et al. Vectors as epidemiological sentinels: patterns of within-tick Borrelia burgdorferi diversity. PLOS Pathog. 12, e1005759 (2016).

  47. 47.

    Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill and Wang, New York, 1983).

  48. 48.

    Matuschka, F. & Spielman, A. The emergence of Lyme disease in a changing environment in North America and central Europe. Exp. Appl. Acarol. 2, 337–353 (1986).

  49. 49.

    Eisen, R. J., Eisen, L. & Beard, C. B. County-scale distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the continental United States. J. Med. Entomol. 53, 349–386 (2016).

  50. 50.

    Ogden, N. H. et al. A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int. J. Parasitol. 35, 375–389 (2005).

  51. 51.

    Schutzer, S. E. et al. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J. Bacteriol. 193, 1018–1020 (2011).

  52. 52.

    Casjens, S. et al. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35, 490–516 (2002).

  53. 53.

    Casjens, S. R. et al. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS ONE 7, e33280 (2012).

  54. 54.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  55. 55.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  56. 56.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

  57. 57.

    Feil, E. et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA 98, 182–187 (2001).

  58. 58.

    Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

  59. 59.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  60. 60.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

  61. 61.

    FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

  62. 62.

    Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).

  63. 63.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

  64. 64.

    Inouye, M., Dashnow, H., Raven, L. & Schultz, M. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6, 90 (2014).

  65. 65.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  66. 66.

    Legendre, P., Desdevises, Y. & Bazin, E. A statistical test for host–parasite coevolution. Syst. Biol. 51, 217–234 (2002).

  67. 67.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

  68. 68.

    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).

  69. 69.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

  70. 70.

    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

  71. 71.

    Slatkin, M. & Hudson, R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).

  72. 72.

    Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).

Download references

Acknowledgements

This study was supported by the National Institutes of Health (NIH) Ecology and Evolution of Infectious Disease Program grant R01 GM105246 and by NIH grant R21AI112938. K.S.W. was supported by the NIH Ruth L. Kirschstein National Research Service Award (F31 AI118233-01A1) and the NSF Doctoral Dissertation Improvement Grant (DEB-1401143). G.C. was supported by the Gaylord Donnelley Postdoctoral Environmental Fellowship (the Yale Institute for Biospheric Studies). We thank N. Ogden, J. Brinkerhoff, S. Paskewitz, D. Fish and S. Bent for providing tick samples; P. Flynn and J. Underwood for laboratory work; C. Ben Mamoun and P. Krause for discussions; and R. Bjornson and the Yale High Performance Computing Center for computational support.

Author information

Author notes

  1. Adalgisa Caccone and Maria A. Diuk-Wasser contributed equally to this work

Affiliations

  1. Department of Epidemiology of Microbial Disease, Yale University, New Haven, CT, 06511, USA

    • Katharine S. Walter
  2. Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA

    • Giovanna Carpi
  3. Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA

    • Adalgisa Caccone
  4. Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York City, NY, 10027, USA

    • Maria A. Diuk-Wasser

Authors

  1. Search for Katharine S. Walter in:

  2. Search for Giovanna Carpi in:

  3. Search for Adalgisa Caccone in:

  4. Search for Maria A. Diuk-Wasser in:

Contributions

K.S.W., M.A.D.-W., A.C. and G.C. conceived of and designed the experiments. K.S.W. performed the experiments and analysed the data. M.A.D.-W., A.C., G.C. and K.S.W. contributed reagents/materials/analysis tools. K.S.W., M.A.D.-W. and A.C. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Katharine S. Walter.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures; Supplementary Tables, and Supplementary References

  2. Supplementary Dataset

    Sample descriptions. For each bacterial sample, the biological source, sampling location, and B. burgdorferi mapping statisticsSample descriptions. For each bacterial sample, the biological source, sampling location, and B. burgdorferi mapping statistics