Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cradles and museums of Antarctic teleost biodiversity

Abstract

Isolated in one of the most extreme marine environments on Earth, teleost fish diversity in Antarctica’s Southern Ocean is dominated by one lineage: the notothenioids. Throughout the past century, the long-term persistence of this unique marine fauna has become increasingly threatened by regional atmospheric and, to a lesser extent oceanic, warming. Developing an understanding of how historical temperature shifts have shaped source–sink dynamics for Antarctica’s teleost lineages provides critical insight for predicting future demographic responses to climate change. We use a combination of phylogenetic and biogeographic modelling to show that high-latitude Antarctic nearshore habitats have been an evolutionary sink for notothenioid species diversity. Contrary to expectations from island biogeographic theory, lower latitude regions of the Southern Ocean that include the northern Antarctic Peninsula and peripheral island archipelagos act as source areas to continental diversity. These peripheral areas facilitate both the generation of new species and repeated colonization of nearshore Antarctic continental regions. Our results provide historical context to contemporary trends of global climate change that threaten to invert these evolutionary dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Expectations of dominant biogeographic patterns11 under three models of origination and persistence.
Fig. 2: Biogeographic transitions in the Southern Ocean.
Fig. 3: Patterns of HLA endemicity and biogeographic transitions to non-polar areas.

References

  1. 1.

    Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. USA 109, 3434–3439 (2012).

    Article  Google Scholar 

  2. 2.

    Clarke, A. & Alistair Crame, J. The origin of the Southern Ocean marine fauna. Geol. Soc. London Spec. Publ. 47, 253–268 (1989).

    Article  Google Scholar 

  3. 3.

    Dell, R. K. in Advances in Marine Biology Vol. 10 (eds Russell, F. S. & Yonge, M.) 1–216 (1972).

  4. 4.

    Thatje, S., Hillenbrand, C.-D. & Larter, R. On the origin of Antarctic marine benthic community structure. Trends Ecol. Evol. 20, 534–540 (2005).

    Article  PubMed  Google Scholar 

  5. 5.

    Allcock, A. L. & Strugnell, J. M. Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol. Evol. 27, 520–528 (2012).

    Article  PubMed  Google Scholar 

  6. 6.

    Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).

    Article  PubMed  Google Scholar 

  7. 7.

    Goldberg, E. E., Roy, K., Lande, R. & Jablonski, D. Diversity, endemism, and age distributions in macroevolutionary sources and sinks. Am. Nat. 165, 623–633 (2005).

    Article  PubMed  Google Scholar 

  8. 8.

    Constable, A. Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES J. Mar. Sci. 57, 778–791 (2000).

    Article  Google Scholar 

  9. 9.

    Clarke, A., Andrew, C. & Johnston, I. A. Evolution and adaptive radiation of Antarctic fishes. Trends Ecol. Evol. 11, 212–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Matschiner, M., Hanel, R. & Salzburger, W. On the origin and trigger of the notothenioid adaptive radiation. PLoS ONE 6, e18911 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    La Mesa, M., Eastman, J. T. & Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol. 27, 321–338 (2004).

    Article  Google Scholar 

  12. 12.

    Hutsemekers, V. et al. Oceanic islands are not sinks of biodiversity in spore-producing plants. Proc. Natl Acad. Sci. USA 108, 18989–18994 (2011).

    Article  PubMed  Google Scholar 

  13. 13.

    Clarke, A., Barnes, D. K. A. & Hodgson, D. A. How isolated is Antarctica? Trends Ecol. Evol. 20, 1–3 (2005).

    Article  PubMed  Google Scholar 

  14. 14.

    Thatje, S., Hillenbrand, C.-D., Mackensen, A. & Larter, R. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89, 682–692 (2008).

    Article  PubMed  Google Scholar 

  15. 15.

    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Syst. Biol. 63, 951–970 (2014).

    Article  PubMed  Google Scholar 

  16. 16.

    Patiño, J. et al. Approximate Bayesian computation reveals the crucial role of oceanic islands for the assembly of continental biodiversity. Syst. Biol. 64, 579–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Moon, K. L., Chown, S. L. & Fraser, C. I. Reconsidering connectivity in the sub-Antarctic. Biol. Rev. https://doi.org/10.1111/brv.12327 (2017).

    Article  PubMed  Google Scholar 

  18. 18.

    Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl Acad. Sci. USA 109, 4938–4943 (2012).

    Article  PubMed  Google Scholar 

  19. 19.

    Byrne, M., Gall, M., Wolfe, K. & Agüera, A. From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean. Glob. Change Biol. 22, 3874–3887 (2016).

    Article  Google Scholar 

  20. 20.

    Aronson, R. B. et al. Climate change and invasibility of the Antarctic benthos. Annu. Rev. Ecol. Evol. Syst. 38, 129–154 (2007).

    Article  Google Scholar 

  21. 21.

    Smith, C. R. et al. A large population of king crabs in Palmer Deep on the West Antarctic Peninsula shelf and potential invasive impacts. Proc. R. Soc. B. 279, 1017–1026 (2012).

    Article  PubMed  Google Scholar 

  22. 22.

    Aronson, R. B., Frederich, M., Price, R. & Thatje, S. Prospects for the return of shell-crushing crabs to Antarctica. J. Biogeogr. 42, 1–7 (2014).

    Article  Google Scholar 

  23. 23.

    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C. & Vernet, M. Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep-Sea Res. II 55, 1964–1987 (2008).

    Article  Google Scholar 

  26. 26.

    Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  27. 27.

    Mulvaney, R. et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489, 141–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 3, 843–847 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    McNeil, B. I. & Matear, R. J. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc. Natl Acad. Sci. USA 105, 18860–18864 (2008).

    Article  PubMed  Google Scholar 

  30. 30.

    Bilyk, K. T. & Devries, A. L. Heat tolerance and its plasticity in Antarctic fishes. Comp. Biochem. Physiol. A 158, 382–390 (2011).

    Article  CAS  Google Scholar 

  31. 31.

    Li, C., Orti, G., Zhang, G. & Lu, G. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 7, 44 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Near, T. J., Pesavento, J. J. & Cheng, C. H. C. Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae). Mol. Phylogenet. Evol. 28, 87–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Kocher, T. D., Conroy, J. A., McKaye, K. R., Stauffer, J. R. & Lockwood, S. F. Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Mol. Phylogenet. Evol. 4, 420–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Drummond, A. J. & Bouckaert, R. R. Bayesian Evolutionary Analysis with BEAST (Cambridge Univ. Press, Cambridge, 2015).

  37. 37.

    Near, T. J. et al. Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol. Biol. 15, 109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Rutschmann, S. et al. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol. Ecol. 20, 4707–4721 (2011).

    Article  PubMed  Google Scholar 

  39. 39.

    Dornburg, A., Townsend, J. P., Friedman, M. & Near, T. J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 14, 169 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Near, T. J. Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarct. Sci. 16, 37–44 (2004).

    Article  Google Scholar 

  41. 41.

    Near, T. J. et al. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc. Natl Acad. Sci. USA 110, 12738–12743 (2013).

    Article  PubMed  Google Scholar 

  42. 42.

    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726–741 (2012).

    Article  Google Scholar 

  44. 44.

    Tyler, P. & Paul, T. in Biogeographic Atlas of the Southern Ocean (eds de Broyer, C. & Koubbi, P.) 328–362 (Scientific Committee on Antarctic Research, Cambridge, 2014).

  45. 45.

    Miller, R. G. History and Atlas of the Fshes of the Antarctic Ocean (Foresta Institute for Ocean and Mountain Studies, Carson City, 1993).

    Article  Google Scholar 

  46. 46.

    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).

    Article  PubMed  Google Scholar 

  47. 47.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, Cambridge, 2007).

  48. 48.

    Bostock, M., Ogievetsky, V. & Heer, J. D3: data-driven documents. IEEE Trans. Vis. Comput. Graph. 17, 2301–2309 (2011).

    Article  PubMed  Google Scholar 

  49. 49.

    Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).

    Article  Google Scholar 

  50. 50.

    Claeskens, G. & Hjort, N. L. Model Selection and Model Averaging (Cambridge Univ. Press, Cambridge, 2008).

  51. 51.

    Li, W. L. S. & Drummond, A. J. Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 29, 751–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Alfaro, M. E. & Huelsenbeck, J. P. Comparative performance of Bayesian and AIC-based measures of phylogenetic model uncertainty. Syst. Biol. 55, 89–96 (2006).

    Article  PubMed  Google Scholar 

  53. 53.

    Dornburg, A., Santini, F. & Alfaro, M. E. The influence of model averaging on clade posteriors: an example using the triggerfishes (Family Balistidae). Syst. Biol. 57, 905–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).

    Article  Google Scholar 

  55. 55.

    Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: density-dependent processes structure biodiversity. Trends Ecol. Evol. 28, 78–85 (2013).

    Article  PubMed  Google Scholar 

  56. 56.

    Ettinger, A. & HilleRisLambers, J. Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.13649 (2017).

    Article  Google Scholar 

  57. 57.

    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Kennicutt, M. C. II et al. Polar research: six priorities for Antarctic science. Nature 512, 23–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604 (2005).

    Google Scholar 

  60. 60.

    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NCSM ichthyology research unit, members of the Donoghue and Near Laboratory groups and attendees of the 2016 Verrill Medal Symposium at the Peabody Museum of Natural History for helpful discussions of this work, and K. Zapfe for help with illustrations. A.D.L was supported by a North Carolina State University undergraduate research fellowship. T.J.N was supported by the National Science Foundation (ANT-1341661) and the Bingham Oceanographic Fund of the Peabody Museum of Natural History, Yale University, and the students, staff and fellows of Saybrook College.

Author information

Affiliations

Authors

Contributions

A.D. and T.J.N. designed the study. C.D.J. and T.J.N. collected data. A.D., A.D.L. and T.J.N. performed analyses. A.D., A.D.L., S.F. and T.J.N. wrote the initial manuscript. C.D.J. contributed to the subsequent writing and development of the manuscript.

Corresponding author

Correspondence to Alex Dornburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–3 and Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dornburg, A., Federman, S., Lamb, A.D. et al. Cradles and museums of Antarctic teleost biodiversity. Nat Ecol Evol 1, 1379–1384 (2017). https://doi.org/10.1038/s41559-017-0239-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing