Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The evo-devo of plant speciation


Speciation research bridges the realms of macro- and microevolution. Evolutionary developmental biology (evo-devo) has classically dealt with macroevolutionary questions through a comparative approach to distantly related organisms, but the field later broadened in focus to address recent speciation and microevolution. Here we review available evidence of the power of evo-devo approaches to understand speciation in plants at multiple scales. At a macroevolutionary scale, evidence is accumulating for evolutionary developmental mechanisms giving rise to key innovations promoting speciation. At the macro microevolution transition, we review instances of evo-devo change underlying both the origin of reproductive barriers and phenotypic changes distinguishing closely related species. At the microevolutionary scale, the study of developmental variation within species provides insight into the processes that generate the raw material for evolution and speciation. We conclude by advocating a strong interaction between developmental biology and evolutionary biology at multiple scales to gain a deeper understanding of plant speciation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Model systems for the evolutionary developmental study of plant speciation.
Figure 2: Species showing intraspecific variation in developmental traits relevant to plant speciation.


  1. 1

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

    Google Scholar 

  2. 2

    Futuyma, D. J. Evolution 2nd edn (Sinauer Associates, 2009).

    Google Scholar 

  3. 3

    Arthur, W. Evolution: a Developmental Approach (Wiley-Blackwell, 2011).

    Google Scholar 

  4. 4

    Theiβen, G., Melzer, R. & Rümpler, F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259–3271 (2016).

    Article  CAS  Google Scholar 

  5. 5

    Nunes, M. D. S., Arif, S., Schlötterer, C. & McGregor, A. P. A perspective on micro-evo-devo: progress and potential. Genetics 195, 625–634 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Minelli, A. & Fusco, G. On the evolutionary developmental biology of speciation. Evol. Biol. 39, 242–254 (2012).

    Article  Google Scholar 

  7. 7

    Rieseberg, L. H. & Willis, J. H. Plant speciation. Science 317, 910–914 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Rieseberg, L. H. & Blackman, B. K. Speciation genes in plants. Ann. Bot. 106, 439–455 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Armbruster, W. S. & Muchhala, N. Associations between floral specialization and species diversity: cause, effect, or correlation?. Evol. Ecol. 23, 159–179 (2009).

    Article  Google Scholar 

  10. 10

    Dietrich, M. R. in Contemporary Debates in Philosophy of Biology (eds Ayala, F. J. & Arp, R. ) 169–179 (Wiley-Blackwell, 2010).

    Google Scholar 

  11. 11

    Erwin, D. H. in Contemporary Debates in the Philosophy of Biology (eds Ayala, F. J. & Arp, R. ) 180–193 (Wiley-Blackwell, 2010).

    Google Scholar 

  12. 12

    Melzer, R. & Theißen, G. The significance of developmental robustness for species diversity. Ann. Bot. 117, 725–732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Heard, S. B. & Hauser, D. L. Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10, 151–173 (1995).

    Article  Google Scholar 

  14. 14

    Kay, K. M. et al. in Ecology and Evolution of Flowers (eds Harder, L. D. & Barrett, S. C. H. ) 311–325 (Oxford Univ. Press, 2006).

    Google Scholar 

  15. 15

    Soltis, D. E. et al. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348 (2009).

    Article  PubMed  Google Scholar 

  16. 16

    Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15, 147–153 (2012).

    Article  PubMed  Google Scholar 

  18. 18

    Grimaldi, D. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann. Missouri Bot. Gard. 86, 373–406 (1999).

    Article  Google Scholar 

  19. 19

    Kopp, A. Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways. Evolution 63, 2771–2789 (2009).

    Article  PubMed  Google Scholar 

  20. 20

    Sargent, R. D. Floral symmetry affects speciation rates in angiosperms. Proc. R. Soc. Lond. B 271, 603–608 (2004).

    Article  Google Scholar 

  21. 21

    Hileman, L. C. Bilateral flower symmetry—how, when and why? Curr. Opin. Plant Biol. 17, 146–152 (2014).

    Article  PubMed  Google Scholar 

  22. 22

    Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57, 761–780 (2006).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Rausher, M. D. Evolutionary transitions in floral color. Int. J. Plant Sci. 169, 7–21 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Wessinger, C. A. & Rausher, M. D. Lessons from flower colour evolution on targets of selection. J. Exp. Bot. 63, 5741–5749 (2012).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Raff, R. A. Written in stone: fossils, genes and evo–devo. Nat. Rev. Genet. 8, 911–920 (2007).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Oyston, J. W., Hughes, M., Gerber, S. & Wills, M. A. Why should we investigate the morphological disparity of plant clades?. Ann. Bot. 117, 859–879 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Boyce, C. K. The evolution of plant development in a paleontological context. Curr. Opin. Plant Biol. 13, 102–107 (2010).

    Article  PubMed  Google Scholar 

  28. 28

    Hetherington, A. J., Dubrovsky, J. G. & Dolan, L. Unique cellular organization in the oldest root meristem. Curr. Biol. 26, 1629–1633 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Rothwell, G. W., Wyatt, S. E. & Tomescu, A. M. F. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm. Am. J. Bot. 101, 899–913 (2014).

    Article  PubMed  Google Scholar 

  30. 30

    Rothwell, G. W., Sanders, H., Wyatt, S. E. & Lev-Yadun, S. A fossil record for growth regulation: the role of auxin in wood evolution. Ann. Missouri Bot. Gard. 95, 121–134 (2008).

    Article  Google Scholar 

  31. 31

    Yi, S. Y. & Kato, M. Basal meristem and root development in Isoetes asiatica and Isoetes japonica. Int. J. Plant Sci. 162, 1225–1235 (2001).

    Article  Google Scholar 

  32. 32

    Arthur, W. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764 (2002).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Ellis, A. G., Weis, A. E. & Gaut, B. S. Evolutionary radiation of “stone plants” in the genus Argyroderma (Aizoaceae): unraveling the effects of landscape, habitat, and flowering time. Evolution 60, 39–55 (2006).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Bradford, J. C. A cladistic analysis of species groups in Weinmannia (Cunoniaceae) based on morphology and inflorescence architecture. Ann. Missouri Bot. Gard. 85, 565–593 (1998).

    Article  Google Scholar 

  35. 35

    Puzey, J. R., Gerbode, S. J., Hodges, S. A., Kramer, E. M. & Mahadevan, L. Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy. Proc. R. Soc. Lond. B 279, 1640–1645 (2012).

    Article  Google Scholar 

  36. 36

    Whibley, A. C. et al. Evolutionary paths underlying flower color variation in Antirrhinum. Science 313, 963–966 (2006).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Ojeda, I. et al. Comparative micromorphology of petals in Macaronesian Lotus (Leguminosae) reveals a loss of papillose conical cells during the evolution of bird pollination. Int. J. Plant Sci. 173, 365–374 (2012).

    Article  Google Scholar 

  38. 38

    Feng, X. et al. Evolution of allometry in Antirrhinum. Plant Cell 21, 2999–3007 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176–178 (2003).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Hoballah, M. E. et al. Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19, 779–790 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Hodges, S. A., Whittall, J. B., Fulton, M. & Yang, J. Y. Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Am. Nat. 159, S51–S60 (2002).

    Article  PubMed  Google Scholar 

  42. 42

    Reck-Kortmann, M. et al. Multilocus phylogeny reconstruction: new insights into the evolutionary history of the genus Petunia. Mol. Phylogenet. Evol. 81, 19–28 (2014).

    Article  PubMed  Google Scholar 

  43. 43

    Gübitz, T., Hoballah, M. E., Dell’Olivo, A. & Kuhlemeier, C. in Petunia: Evolutionary, Developmental and Physiological Genetics (eds Gerats, T. & Strommer, J. ) 29–49 (Springer-Verlag, 2009).

    Book  Google Scholar 

  44. 44

    Klahre, U. et al. Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr. Biol. 21, 730–739 (2011).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Sheehan, H. et al. MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. Nat. Genet. 48, 159–166 (2016).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Yuan, Y. W., Byers, K. J. R. P. & Bradshaw, H. D. The genetic control of flower–pollinator specificity. Curr. Opin. Plant Biol. 16, 422–428 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Hermann, K. et al. Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in Petunia. Curr. Biol. 23, 873–877 (2013).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Lobo, J. A. et al. Factors affecting phenological patterns of bombacaceous trees in seasonal forests in Costa Rica and Mexico. Am. J. Bot. 90, 1054–1063 (2003).

    Article  PubMed  Google Scholar 

  49. 49

    Holt, A. L., van Haperen, J. M. A., Groot, E. P. & Laux, T. Signaling in shoot and flower meristems of Arabidopsis thaliana. Curr. Opin. Plant Biol. 17, 96–102 (2014).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Glover, B. J. Understanding flowers and flowering: an integrated approach (Oxford Univ. Press, 2014).

  51. 51

    Méndez-Vigo, B., Picó, F. X., Ramiro, M., Martínez-Zapater, J. M. & Alonso-Blanco, C. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol. 157, 1942–1955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Grillo, M. A., Li, C., Hammond, M., Wang, L. & Schemske, D. W. Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana. New Phytol. 197, 1321–1331 (2013).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Rosas, U. et al. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS. Nat. Commun. 5, 3651 (2014).

  54. 54

    Sicard, A. & Lenhard, M. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann. Bot. 107, 1433–1443 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Sicard, A. et al. Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella. Proc. Natl Acad. Sci. USA 113, 13911–13916 (2016).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Sas, C. et al. Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in Capsella. Curr. Biol. 26, 3313–3319 (2016).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Whittall, J. B. & Hodges, S. A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447, 706–709 (2007).

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Box, M. S., Bateman, R. M., Glover, B. J. & Rudall, P. J. Floral ontogenetic evidence of repeated speciation via paedomorphosis in subtribe Orchidinae (Orchidaceae). Bot. J. Linn. Soc. 157, 429–454 (2008).

    Article  Google Scholar 

  59. 59

    Blanco-Pastor, J. L. et al. Bees explain floral variation in a recent radiation of Linaria. J. Evolution. Biol. 28, 851–863 (2015).

    CAS  Article  Google Scholar 

  60. 60

    Box, M. S., Dodsworth, S., Rudall, P. J., Bateman, R. M. & Glover, B. J. Characterization of Linaria KNOX genes suggests a role in petal-spur development. Plant. J. 68, 703–714 (2011).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Yant, L., Collani, S., Puzey, J. R., Levy, C. & Kramer, E. M. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur. Proc. R. Soc. Lond. B 282, 20142778 (2015).

  62. 62

    Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561–588 (2009).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Buggs, R. J. A. et al. The legacy of diploid progenitors in allopolyploid gene expression patterns. Phil. Trans. R. Soc. B 369, 20130354 (2014).

    Article  Google Scholar 

  64. 64

    Ichihashi, Y. et al. Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proc. Natl Acad. Sci. USA 111, E2616–E2621 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Vargas, P., Carrió, E., Guzmán, B., Amat, E. & Güemes, J. A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms. J. Biogeogr. 36, 1297–1312 (2009).

    Article  Google Scholar 

  66. 66

    Pigliucci, M. Is evolvability evolvable?. Nat. Rev. Genet. 9, 75–82 (2008).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Johnson, N. A. The micro-evolution of development. Genetica 129, 1–5 (2007).

    Article  PubMed  Google Scholar 

  68. 68

    Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Systemat. 35, 375–403 (2004).

    Article  Google Scholar 

  69. 69

    Sobel, J. M. & Streisfeld, M. A. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution 69, 447–461 (2015).

    Article  PubMed  Google Scholar 

  70. 70

    Stankowski, S. & Streisfeld, M. A. Introgressive hybridization facilitates adaptive divergence in a recent radiation of monkeyflowers. Proc. R. Soc. Lond. B 282, 20151666 (2015).

  71. 71

    Streisfeld, M. A., Young, W. N. & Sobel, J. M. Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in Mimulus aurantiacus. PLoS Genet. 9, e1003385 (2013).

  72. 72

    Busch, A., Horn, S., Mühlhausen, A., Mummenhoff, K. & Zachgo, S. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family. Mol. Biol. Evol. 29, 1241–1254 (2012).

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Gómez, J. M., Abdelaziz, M., Muñoz-Pajares, J. & Perfectti, F. Heritability and genetic correlation of corolla shape and size in Erysimum mediohispanicum. Evolution 63, 1820–1831 (2009).

    Article  PubMed  Google Scholar 

  74. 74

    Gómez, J. M., Perfectti, F. & Camacho, J. P. M. Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. Am. Nat. 168, 531–545 (2006).

    Article  PubMed  Google Scholar 

  75. 75

    Ellis, A. G. et al. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa. Phil. Trans. R. Soc. Lond. B 369, 20130563 (2014).

    Article  Google Scholar 

  76. 76

    Roda, F. et al. Convergence and divergence during the adaptation to similar environments by an Australian groundsel. Evolution 67, 2515–2529 (2013).

    Article  PubMed  Google Scholar 

  77. 77

    Kivimäki, M., Kärkkäinen, K., Gaudeul, M., Løe, G. & Ågren, J. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol. Ecol. 16, 453–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Pfennig, D. W. et al. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).

    Article  PubMed  Google Scholar 

  79. 79

    Levis, N. A. & Pfennig, D. W. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574 (2016).

    Article  PubMed  Google Scholar 

  80. 80

    Nakayama, H. et al. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. Plant Cell 26, 4733–4748 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Flatscher, R., Frajman, B., Schönswetter, P. & Paun, O. Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation?. Genet. Res. Int. 2012, 698421 (2012).

  82. 82

    Turner, B. M. Epigenetic responses to environmental change and their evolutionary implications. Phil. Trans. R. Soc. Lond. B 364, 3403–3418 (2009).

    CAS  Article  Google Scholar 

  83. 83

    Paun, O. et al. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol. Biol. Evol. 27, 2465–2473 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Herrera, C. M. & Bazaga, P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187, 867–876 (2010).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Scoville, A. G., Barnett, L. L., Bodbyl-Roels, S., Kelly, J. K. & Hileman, L. C. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytol. 191, 251–263 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Hodges, S. A. Floral nectar spurs and diversification. Int. J. Plant Sci. 158, 81–88 (1997).

    Article  Google Scholar 

  88. 88

    Mack, J. L. K. & Davis, A. R. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae). Ann. Bot. 115, 641–649 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Fulton, M. & Hodges, S. A. Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proc. R. Soc. Lond. B 266, 2247–2252 (1999).

    Article  Google Scholar 

  90. 90

    Boberg, E. et al. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia. Ann. Bot. 113, 267–275 (2014).

    Article  PubMed  Google Scholar 

  91. 91

    Theißen, G. Saltational evolution: hopeful monsters are here to stay. Theory Biosci. 128, 43–51 (2009).

    Article  PubMed  Google Scholar 

  92. 92

    Hintz, M. et al. Catching a ‘hopeful monster’: shepherd's purse (Capsella bursa-pastoris) as a model system to study the evolution of flower development. J. Exp. Bot. 57, 3531–3542 (2006).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Hameister, S., Nutt, P., Theiβen, G. & Neuffer, B. Mapping a floral trait in Shepherds purse–'stamenoid petals’ in natural populations of Capsella bursa-pastoris (L.) Medik. Flora 208, 641–647 (2013).

    Article  Google Scholar 

  94. 94

    Hameister, S., Neuffer, B. & Bleeker, W. Genetic differentiation and reproductive isolation of a naturally occurring floral homeotic mutant within a wild-type population of Capsella bursa-pastoris (Brassicaceae). Mol. Ecol. 18, 2659–2667 (2009).

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Ziermann, J. et al. Floral visitation and reproductive traits of Stamenoid petals, a naturally occurring floral homeotic variant of Capsella bursa-pastoris (Brassicaceae). Planta 230, 1239–1249 (2009).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Chouard, T. Revenge of the hopeful monster. Nature 463, 864–867 (2010).

    CAS  Article  PubMed  Google Scholar 

  97. 97

    Gould, S. J. Ontogeny and Phylogeny (Harvard Univ. Press, 1977).

    Google Scholar 

  98. 98

    Telford, M. J. & Budd, G. E. The place of phylogeny and cladistics in evo-devo research. Int. J. Dev. Biol. 47, 479–490 (2003).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Laurin, M. & Germain, D. Developmental characters in phylogenetic inference and their absolute timing information. Syst. Biol. 60, 630–644 (2011).

    Article  PubMed  Google Scholar 

  100. 100

    Minelli, A. Phylo-evo-devo: combining phylogenetics with evolutionary developmental biology. BMC Biol. 7, 36 (2009).

Download references


We thank E. Moyroud, G. Mellers and R. Melzer for their critical reading of the manuscript and helpful comments; and E. S. Ballerini, H. D. Bradshaw, A. N. Doust, J. M. Gómez, S. A. Hodges, A. Hudson, E. Mavrodiev, G. Mellers, J. Quiles, H. Sheehan, D. E. Soltis, M. A. Streisfield and G. Theiβen for providing photographs. M.F.-M. has been supported by the Marie Curie Intra-European Fellowship LINARIA-SPECIATION (FP7-PEOPLE-2013-IEF, project reference 624396 to M.F.-M and B.J.G) and an Isaac Newton Trust Research Grant (Trinity College, Cambridge).

Author information




M.F.-M. and B.J.G. wrote the manuscript jointly.

Corresponding author

Correspondence to Beverley J. Glover.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Mazuecos, M., Glover, B. The evo-devo of plant speciation. Nat Ecol Evol 1, 0110 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing