Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity

Abstract

Global stressors, such as ocean acidification, constitute a rapidly emerging and significant problem for marine organisms, ecosystem functioning and services. The coastal ecosystems of the Humboldt Current System (HCS) off Chile harbour a broad physical–chemical latitudinal and temporal gradient with considerable patchiness in local oceanographic conditions. This heterogeneity may, in turn, modulate the specific tolerances of organisms to climate stress in species with populations distributed along this environmental gradient. Negative response ratios are observed in species models (mussels, gastropods and planktonic copepods) exposed to changes in the partial pressure of CO2 ( p CO 2 ) far from the average and extreme p CO 2 levels experienced in their native habitats. This variability in response between populations reveals the potential role of local adaptation and/or adaptive phenotypic plasticity in increasing resilience of species to environmental change. The growing use of standard ocean acidification scenarios and treatment levels in experimental protocols brings with it a danger that inter-population differences are confounded by the varying environmental conditions naturally experienced by different populations. Here, we propose the use of a simple index taking into account the natural p CO 2 variability, for a better interpretation of the potential consequences of ocean acidification on species inhabiting variable coastal ecosystems. Using scenarios that take into account the natural variability will allow understanding of the limits to plasticity across organismal traits, populations and species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temporal series (line plots) and frequency analysis (bars plots) of surface (upper 10 m depth) p CO 2 (μatm) for different coastal environments along the Chilean coast.
Figure 2: The mean effect of near-future (2100) CO2-driven ocean acidification on different physiological traits in marine organisms.
Figure 3: Mean response of different marine taxa in relation to a ∆ p CO 2 level exposition.

References

  1. 1

    Caldeira, K. & Wickett, M. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 110, C09S04 (2005).

    Article  Google Scholar 

  2. 2

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. A. 369, 835–841 (2011).

    Article  PubMed  Google Scholar 

  4. 4

    Gattuso, & J. P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, 49–55 (2015).

    Article  Google Scholar 

  5. 5

    Magnan, A. K. et al. Implications of the Paris agreement for the ocean. Nat. Clim. Change 6, 732–735 (2016).

    Article  Google Scholar 

  6. 6

    Bowman, H. I. Applying organized scepticism to ocean acidification research. ICES J. Mar. Sci. 73, 529–536 (2016).

    Google Scholar 

  7. 7

    Doney, S. C. The growing human footprint on coastal and open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Science 328, 1512–1516 (2010).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).

    Article  Google Scholar 

  10. 10

    Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. in Guide to Best Practices for Ocean Acidification Research and Data Reporting (eds Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. P.) 53–66 (Publications Office of the European Union, 2010).

    Google Scholar 

  11. 11

    Kroeker, K., Kordas, R., Crim, R. & Singh, G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    Article  PubMed  Google Scholar 

  12. 12

    Waldbusser, G. G. & Salisbury, J. E. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and hábitats. Annu. Rev. Mar. Sci. 6, 221–247 (2014).

    Article  Google Scholar 

  13. 13

    Feely, R. A., Sabine, C. L., Hernández-Ayon, J. M, Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Salisbury, J., Green, M., Hunt, C. W. & Campbell, J. Coastal acidification by rivers: a threat to shellfish? Eos 89, 513–528 (2008).

    Article  Google Scholar 

  15. 15

    Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Hoffman, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).

    Article  Google Scholar 

  17. 17

    Reum, J. C. P. et al. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES J. Mar. Sci. 73, 582–595 (2016).

    Article  Google Scholar 

  18. 18

    Duarte, C. M. et al. Is ocean acidification an openocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36, 221–236 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Dorey, N., Lancon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point for sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).

    Google Scholar 

  20. 20

    Ventura, A., Schulz, S & Dupont, S. Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater. Sci. Rep. 6, 23728 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).

    Article  Google Scholar 

  22. 22

    Kapsenberg, L., Kelley, A. L., Shaw, E. C., Martz, T. R. & Hofmann, G. E. Seasonal pH variability in near-shore Antarctica in the present and future. Sci. Rep. 5, 9638 (2015).

    Article  PubMed Central  Google Scholar 

  23. 23

    Kapsenberg, L. & Hofmann, G. E. Regional to local influences on daily to inter-annual pH variability in the northern Channel Islands, California, USA. Limnol. Oceanogr. 61, 953–968 (2016).

    CAS  Article  Google Scholar 

  24. 24

    McElhany, P. & Busch, D. S. Appropriate pCO2 treatments in ocean acidification experiments. Mar. Biol. 160, 1807–1812 (2012).

    Article  Google Scholar 

  25. 25

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).

    Google Scholar 

  26. 26

    Pérez, C. A. et al. Influence of climate and land use in carbon biogeochemistry in lower reaches of rivers in central–southern Chile: implications for the carbonate system in river-influenced rockyshore environments. J. Geophys. Res.: Biogeosci. 120, 673–692 (2015).

    Article  Google Scholar 

  27. 27

    Calosi, P. et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Phil. Trans. R. Soc. B 368, 20120444 (2013).

    Article  PubMed  Google Scholar 

  28. 28

    Bednarsêk, N. et al. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B 281, 20140123 (2014).

    Article  PubMed  Google Scholar 

  29. 29

    Lardies, M. A. et al. Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. J. Sea Res. 90, 127–134 (2014).

    Article  Google Scholar 

  30. 30

    Vargas, C. A. et al. CO2-driven ocean acidification disrupts the filter feeding behavior in Chilean gastropod and bivalve species from different geographic localities. Estuaries Coasts 38, 1163–1177 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Duarte, C. et al. Intraspecific variability in the response of the edible mussel Mytilus chilensis (Hupe) to ocean acidification. Estuaries Coasts 38, 590–598 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Hoffman, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  Google Scholar 

  33. 33

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    Article  Google Scholar 

  34. 34

    Applebaum, S. L., Pan, T.-C. F., Hedgecock, D. & Manahan, D. T. Separating the nature and nurture of the allocation of energy in response to global change. Integr. Comp. Biol. 54, 284–295 (2014).

    Article  PubMed  Google Scholar 

  35. 35

    Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Glob. Change Biol. 22, 2633–2650 (2016).

    Article  Google Scholar 

  36. 36

    Beaman J. E., White, C. R. & Seebacher, F. Evolution of plasticity: mechanistic link between development and reversible acclimation. TREE 31, 237–249 (2016).

    PubMed  Google Scholar 

  37. 37

    Bordeau, P. E. et al. What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis. Heredity 115, 312–321 (2015).

    Article  Google Scholar 

  38. 38

    Thiel, M. et al. The Humboldt Current System of northern and central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. 45, 195–344 (2007).

    Article  Google Scholar 

  39. 39

    Torres, R. et al. Air–sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006 (2011).

    Google Scholar 

  40. 40

    Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromisos to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Vargas et al. Riverine and corrosive upwelling waters influences on the carbonate system in the coastal upwelling area off central Chile: implications for coastal acidification events. J. Geophys. Res.: Biogeosci. 121, 1468–1483 (2016).

    Article  Google Scholar 

  42. 42

    Torres, R. et al. Evaluation of a semi-automatic system for long-term seawater carbonate chemistry manipulation. Rev. Chil. Hist. Nat. 86, 443–451 (2013).

    Article  Google Scholar 

  43. 43

    Aguilera, V. A., Vargas, C. A., Lardies, M. A. & Poupin, M. J. Adaptive variability to low-pH river discharges in Acartia tonsa and stress responses to high p CO 2 . Mar. Ecol. 37, 215–226 (2016).

    CAS  Article  Google Scholar 

  44. 44

    Manríquez, P. H. et al. Effects of ocean acidification on larval development and early post-hatching traits in Concholepas concholepas (loco). Mar. Ecol. Prog. Ser. 514, 87–103 (2014).

    Article  Google Scholar 

  45. 45

    Yang, Y., Hansson, L. & Gattuso, J.-P. Data compilation on the biological response to ocean acidification: an update. Earth Syst. Sci. Data 8, 79–87 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Millennium Nucleus Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS) funded by MINECON NC120086 and the Millennium Institute of Oceanography (IMO) funded by MINECON IC120019. Previous and additional support from grants FONDECYT 1130254, 1060938, 1140938, 11400092 and 11130052 (RELOAD) is also acknowledged. We acknowledge L. Saavedra for p CO 2 data sharing through grant FONDECYT 3150392. S.D. is funded by the Centre for Marine Evolutionary Biology (CeMEB; http://www.cemeb.science.gu.se/) and supported by a Linnaeus grant from the Swedish Research Councils VR and Formas.

Author information

Affiliations

Authors

Contributions

All authors provided input into data availability and preliminary discussions. C.A.V. led the drafting of the text with main contributions in the same order from S.D., B.R.B., S.W., N.A.L., M.A.L., C.D., P.H.M. and V.M.A. C.A.V. carried out data analysis and the main structure of the study.

Corresponding author

Correspondence to Cristian A. Vargas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1,2, Supplementary Table 1. (PDF 2380 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vargas, C., Lagos, N., Lardies, M. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat Ecol Evol 1, 0084 (2017). https://doi.org/10.1038/s41559-017-0084

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing