Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric hysteresis response of mid-latitude storm tracks to CO2 removal

Abstract

In a warming climate, storm tracks are projected to intensify on their poleward side. Here we use large-ensemble CO2 ramp-up and ramp-down simulations to show that these changes are not reversed when CO2 concentrations are reduced. If CO2 is removed from the atmosphere following CO2 increase, the North Atlantic storm track keeps strengthening until the middle of the CO2 removal, while the recovery of the North Pacific storm track during ramp-down is stronger than its shift during ramp-up. By contrast, the Southern Hemisphere storm track weakens during ramp-down at a rate much faster than its strengthening in the warming period. Compared with the present climate, the Northern Hemisphere storm track becomes stronger and the Southern Hemisphere storm track becomes weaker at the end of CO2 removal. These hemispherically asymmetric storm-track responses are attributable to the weakened Atlantic meridional overturning circulation and the delayed cooling of the Southern Ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global surface air temperature and hemispheric storm-track changes during CO2 pathway.
Fig. 2: Spatial distribution of storm-track changes during CO2 pathway.
Fig. 3: Hysteresis response of cyclone track density.
Fig. 4: Spatial distribution of SST and regional storm-track changes during CO2 pathway.
Fig. 5: Regional storm-track changes as a function of CO2 concentrations.

Similar content being viewed by others

Data availability

The Data used in this study are available via Figshare at https://doi.org/10.6084/m9.figshare.25239559 (ref. 74), and the CMIP6 archives are freely available from https://esgf-node.llnl.gov/projects/cmip6.

Code availability

The analysis were carried out using the function in NCAR Command Language v.6.2.1 and Python packages (scikit-learn 0.23.2). To carry out the interpolation of the model grid data, we utilized climate data operators available at https://code.mpimet.mpg.de/projects/cdo. All figures are generated using the Grid Analysis and Display System (GrADS) v.2.2.1 (http://cola.gmu.edu/grads), and the codes are available via Figshare at https://doi.org/10.6084/m9.figshare.25239559 (ref. 74).

References

  1. Chang, E. K., Lee, S. & Swanson, K. L. Storm track dynamics. J. Clim. 15, 2163–2183 (2002).

    Article  ADS  Google Scholar 

  2. Wu, Y., Ting, M., Seager, R., Huang, H.-P. & Cane, M. A. Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2. 1 model. Clim. Dyn. 37, 53–72 (2011).

    Article  Google Scholar 

  3. Caballero, R. & Hanley, J. Midlatitude eddies, storm-track diffusivity, and poleward moisture transport in warm climates. J. Atmos. Sci. 69, 3237–3250 (2012).

    Article  ADS  Google Scholar 

  4. Hawcroft, M., Shaffrey, L., Hodges, K. & Dacre, H. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 39, L24809 (2012).

    Article  ADS  Google Scholar 

  5. Pfahl, S. & Wernli, H. Quantifying the relevance of cyclones for precipitation extremes. J. Clim. 25, 6770–6780 (2012).

    Article  ADS  Google Scholar 

  6. Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaw, T. A. Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Clim. Change Rep. 5, 345–357 (2019).

    Article  Google Scholar 

  8. Chang, E. K., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos. 117, D23118 (2012).

    Article  ADS  Google Scholar 

  9. Shaw, T. et al. Storm track processes and the opposing influences of climate change. Nat. Geosci. 9, 656–664 (2016).

    Article  ADS  CAS  Google Scholar 

  10. Harvey, B., Cook, P., Shaffrey, L. & Schiemann, R. The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos. 125, e2020JD032701 (2020).

    Article  ADS  Google Scholar 

  11. Priestley, M. D. & Catto, J. L. Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure. Weather Clim. Dyn. 3, 337–360 (2022).

    Article  ADS  Google Scholar 

  12. Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).

    Article  ADS  CAS  Google Scholar 

  13. Lehmann, J., Coumou, D., Frieler, K., Eliseev, A. V. & Levermann, A. Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett. 9, 084002 (2014).

    Article  ADS  Google Scholar 

  14. Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Clim. Change 109, 745–790 (2011).

    Article  ADS  Google Scholar 

  15. Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (WMO, 2018).

  16. Frölicher, T. L. & Joos, F. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model. Clim. Dyn. 35, 1439–1459 (2010).

    Article  Google Scholar 

  17. Wu, P., Ridley, J., Pardaens, A., Levine, R. & Lowe, J. The reversibility of CO2 induced climate change. Clim. Dyn. 45, 745–754 (2015).

    Article  Google Scholar 

  18. Keller, D. P. et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11, 1133–1160 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  ADS  Google Scholar 

  20. Armour, K., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K. & Bitz, C. The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett. 38, L16705 (2011).

    Article  ADS  Google Scholar 

  21. Boucher, O. et al. Reversibility in an Earth System model in response to CO2 concentration changes. Environ. Res. Lett. 7, 024013 (2012).

    Article  ADS  Google Scholar 

  22. Chadwick, R., Wu, P., Good, P. & Andrews, T. Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Clim. Dyn. 40, 295–316 (2013).

    Article  Google Scholar 

  23. Mathesius, S., Hofmann, M., Caldeira, K. & Schellnhuber, H. J. Long-term response of oceans to CO2 removal from the atmosphere. Nat. Clim. Change 5, 1107–1113 (2015).

    Article  ADS  CAS  Google Scholar 

  24. Kug, J.-S. et al. Hysteresis of the intertropical convergence zone to CO2 forcing. Nat. Clim. Change 12, 47–53 (2022).

    Article  ADS  CAS  Google Scholar 

  25. Song, S.-Y. et al. Asymmetrical response of summer rainfall in East Asia to CO2 forcing. Sci. Bull. 67, 213–222 (2022).

    Article  CAS  Google Scholar 

  26. Kim, S.-K. et al. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing. Nat. Clim. Change 12, 834–840 (2022).

    Article  ADS  CAS  Google Scholar 

  27. An, S. I. et al. Global cooling hiatus driven by an AMOC overshoot in a carbon dioxide removal scenario. Earth’s Future 9, e2021EF002165 (2021).

    Article  ADS  CAS  Google Scholar 

  28. Zickfeld, K., MacDougall, A. H. & Matthews, H. D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 11, 055006 (2016).

    Article  ADS  Google Scholar 

  29. Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2021).

  30. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

    Article  ADS  Google Scholar 

  31. Thompson, D. W., Barnes, E. A., Deser, C., Foust, W. E. & Phillips, A. S. Quantifying the role of internal climate variability in future climate trends. J. Clim. 28, 6443–6456 (2015).

    Article  ADS  Google Scholar 

  32. Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G. & Stephenson, D. B. A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Clim. 26, 5846–5862 (2013).

    Article  ADS  Google Scholar 

  33. O’Gorman, P. A. & Schneider, T. Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Clim. 21, 5797–5806 (2008).

    Article  ADS  Google Scholar 

  34. Mbengue, C. & Schneider, T. Storm-track shifts under climate change: toward a mechanistic understanding using baroclinic mean available potential energy. J. Atmos. Sci. 74, 93–110 (2017).

    Article  ADS  Google Scholar 

  35. Gertler, C. G., O’Gorman, P. A. & Pfahl, S. Moist available potential energy of the mean state of the atmosphere and the thermodynamic potential for warm conveyor belts and convection. Weather Clim. Dyn. 4, 361–379 (2023).

    Article  ADS  Google Scholar 

  36. Nakamura, H., Sampe, T., Tanimoto, Y. & Shimpo, A. in Earth’s Climate: The Ocean–Atmosphere Interaction (eds Wang, C. et al.) 329–345 (AGU, 2004).

  37. Keil, P. et al. Multiple drivers of the North Atlantic warming hole. Nat. Clim. Change 10, 667–671 (2020).

    Article  ADS  Google Scholar 

  38. Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).

    Article  ADS  Google Scholar 

  39. Chemke, R., Zanna, L. & Polvani, L. M. Identifying a human signal in the North Atlantic warming hole. Nat. Commun. 11, 1540 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. & Brayshaw, D. J. Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci. 5, 313–317 (2012).

    Article  ADS  CAS  Google Scholar 

  41. Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 3659 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gregory, J. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005).

    Article  ADS  Google Scholar 

  43. Kim, H. & An, S.-I. On the subarctic North Atlantic cooling due to global warming. Theor. Appl. Climatol. 114, 9–19 (2013).

    Article  ADS  Google Scholar 

  44. Bakker, P. et al. Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12252–12260 (2016).

    Article  ADS  Google Scholar 

  45. Oh, J. H., An, S. I., Shin, J. & Kug, J. S. Centennial memory of the Arctic Ocean for future Arctic climate recovery in response to a carbon dioxide removal. Earth’s Future 10, e2022EF002804 (2022).

    Article  ADS  Google Scholar 

  46. Bronselaer, B. & Zanna, L. Heat and carbon coupling reveals ocean warming due to circulation changes. Nature 584, 227–233 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Matsumura, S., Ueki, S. & Horinouchi, T. Contrasting responses of midlatitude jets to the North Pacific and North Atlantic warming. Geophys. Res. Lett. 46, 3973–3981 (2019).

    Article  ADS  Google Scholar 

  48. Yeh, S. W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

    Article  ADS  Google Scholar 

  49. Shaw, T. A., Barpanda, P. & Donohoe, A. A moist static energy framework for zonal-mean storm-track intensity. J. Atmos. Sci. 75, 1979–1994 (2018).

    Article  ADS  Google Scholar 

  50. Chemke, R. The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun. 13, 1730 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ayres, H. & Screen, J. Multimodel analysis of the atmospheric response to Antarctic sea ice loss at quadrupled CO2. Geophys. Res. Lett. 46, 9861–9869 (2019).

    Article  ADS  Google Scholar 

  52. Screen, J. A., Eade, R., Smith, D. M., Thomson, S. & Yu, H. Net equatorward shift of the jet streams when the contribution from sea‐ice loss is constrained by observed eddy feedback. Geophys. Res. Lett. 49, e2022GL100523 (2022).

    Article  ADS  Google Scholar 

  53. Lyu, K., Zhang, X., Church, J. A. & Wu, Q. Processes responsible for the Southern Hemisphere ocean heat uptake and redistribution under anthropogenic warming. J. Clim. 33, 3787–3807 (2020).

    Article  ADS  Google Scholar 

  54. Liu, W., Lu, J., Xie, S.-P. & Fedorov, A. Southern Ocean heat uptake, redistribution, and storage in a warming climate: the role of meridional overturning circulation. J. Clim. 31, 4727–4743 (2018).

    Article  ADS  Google Scholar 

  55. Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).

    Article  ADS  Google Scholar 

  56. Long, S.-M., Xie, S.-P., Zheng, X.-T. & Liu, Q. Fast and slow responses to global warming: sea surface temperature and precipitation patterns. J. Clim. 27, 285–299 (2014).

    Article  ADS  Google Scholar 

  57. Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).

    Article  ADS  Google Scholar 

  58. Tebaldi, C., Armbruster, A., Engler, H. & Link, R. Emulating climate extreme indices. Environ. Res. Lett. 15, 074006 (2020).

    Article  ADS  Google Scholar 

  59. Gertler, C. G. et al. Weakening of the extratropical storm tracks in solar geoengineering scenarios. Geophys. Res. Lett. 47, e2020GL087348 (2020).

    Article  ADS  Google Scholar 

  60. Pinto, J. G., Fröhlich, E., Leckebusch, G. & Ulbrich, U. Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Nat. Hazards Earth Syst. Sci. 7, 165–175 (2007).

    Article  ADS  Google Scholar 

  61. Schwierz, C. et al. Modelling European winter wind storm losses in current and future climate. Clim. Change 101, 485–514 (2010).

    Article  ADS  CAS  Google Scholar 

  62. Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article  ADS  Google Scholar 

  63. Trenberth, K. E. & Shea, D. J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, L12704 (2006).

    Article  ADS  Google Scholar 

  64. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).

    Article  ADS  Google Scholar 

  65. Chemke, R., Ming, Y. & Yuval, J. The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Clim. Change 12, 553–557 (2022).

    Article  ADS  Google Scholar 

  66. O’Gorman, P. A. Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl Acad. Sci. USA 107, 19176–19180 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Blackmon, M. L. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci. 33, 1607–1623 (1976).

    Article  ADS  Google Scholar 

  68. Hoskins, B. J. & Hodges, K. I. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 59, 1041–1061 (2002).

    Article  ADS  Google Scholar 

  69. Lee, J. et al. Extratropical cyclones over East Asia: climatology, seasonal cycle, and long-term trend. Clim. Dyn. 54, 1131–1144 (2020).

    Article  Google Scholar 

  70. Peixoto, J. P. & Oort, A. H. Physics of Climate (American Institute of Physics, 1992).

  71. Klawa, M. & Ulbrich, U. A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat. Hazards Earth Syst. Sci. 3, 725–732 (2003).

    Article  ADS  Google Scholar 

  72. Little, A. S., Priestley, M. D. & Catto, J. L. Future increased risk from extratropical windstorms in northern Europe. Nat. Commun. 14, 4434 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rockel, B. & Woth, K. Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim. Change 81, 267–280 (2007).

    Article  ADS  Google Scholar 

  74. Hwang, J. Data and codes for ‘Asymmetric hysteresis response of mid-latitude storm tracks to CO2 removal’. Figshare https://doi.org/10.6084/m9.figshare.25239559 (2024).

Download references

Acknowledgements

Model simulation and data transfer were supported by the National Supercomputing Center with supercomputing resources including technical support (KSC-2021-CHA-0030), the National Center for Meteorological Supercomputer of the Korea Meteorological Administration (KMA) and the Korea Research Environment Open NETwork (KREONET), respectively. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We appreciate the climate modelling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access (https://esgf-node.llnl.gov/projects/cmip6/) and the multiple funding agencies who support CMIP6 and ESGF. S.-W.S. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2018R1A5A1024958 and 2023R1A2C3005607).

Author information

Authors and Affiliations

Authors

Contributions

J.H. conducted analysis, illustrated the figures and wrote the manuscript. S.-W.S. conceptualized the overall research idea and wrote the manuscript. C.I.G. and T.W. improved the interpretation of the results and wrote the manuscript. H.Y. assisted in the computation of Lagrangian storm tracks. S.-W.S., S.-I.A., S.-W.Y., S.-K.M. and J.-S.K. designed the model experiment and conducted initial evaluation. J.S. performed the model experiment. All of the authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Seok-Woo Son.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Discussion and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Son, SW., Garfinkel, C.I. et al. Asymmetric hysteresis response of mid-latitude storm tracks to CO2 removal. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41558-024-01971-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing