Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Net-zero approaches must consider Earth system impacts to achieve climate goals

Abstract

Commitments to net-zero carbon dioxide (CO2) or greenhouse gas (GHG) emissions targets now cover 88% of countries’ emissions. Underlying the accounting behind net-zero frameworks is the assumption that emissions can be balanced with removals such that their net climate effect is zero. However, when considering the full climate impacts of CO2 emissions and removals, there are reasons to expect that the two are not equivalent in terms of their climate outcomes. We identify potential contributors to non-equivalence, including impermanence, biogeophysical and non-CO2 GHG effects, and argue that these non-equivalencies need to be accounted for to achieve climate goals. Given key uncertainties about the full climate impact of CO2 removal, it is prudent to prioritize emission reductions over removals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbon versus climate neutrality.
Fig. 2: Synergy and opposing effects between the biogeophysical and biogeochemical effects of forestation.
Fig. 3: Effect of non-equivalencies on peak and end-of-century warming.

Similar content being viewed by others

References

  1. Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Three ways to improve net-zero emissions targets. Nature 591, 365–368 (2021).

    Article  CAS  Google Scholar 

  2. Lang, J. et al. Net Zero Tracker (Energy and Climate Intelligence Unit, Data-Driven EnviroLab, NewClimate Institute, Oxford Net Zero, 2023).

  3. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  4. Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 673–816 (IPCC, Cambridge Univ. Press, 2021).

  5. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  Google Scholar 

  6. Eby, M. et al. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and temperature perturbations. J. Clim. 22, 2501–2511 (2009).

    Article  Google Scholar 

  7. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Article  CAS  Google Scholar 

  8. Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).

    Article  Google Scholar 

  9. Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).

    Article  CAS  Google Scholar 

  10. Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296–302 (2017).

    Article  Google Scholar 

  11. Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    Article  CAS  Google Scholar 

  12. Benanti, G., Saunders, M., Tobin, B. & Osborne, B. Contrasting impacts of afforestation on nitrous oxide and methane emissions. Agric. For. Meteorol. 198–199, 82–93 (2014).

    Article  Google Scholar 

  13. Dou, X., Zhou, W., Zhang, Q. & Cheng, X. Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China. Atmos. Environ. 126, 98–106 (2016).

    Article  CAS  Google Scholar 

  14. Chen, P. et al. Effects of afforestation on soil CH4 and N2O fluxes in a nsubtropical karst landscape. Sci. Total Environ. 705, 135974 (2020).

    Article  CAS  Google Scholar 

  15. McDaniel, M. D., Saha, D., Dumont, M. G., Hernández, M. & Adams, M. A. The effect of land-use change on soil CH4 and N2O fluxes: a global meta-analysis. Ecosystems 22, 1424–1443 (2019).

    Article  CAS  Google Scholar 

  16. Unger, N. Human land-use-driven reduction of forest volatiles cools global climate. Nat. Clim. Change 4, 907–910 (2014).

    Article  CAS  Google Scholar 

  17. Scott, C. E. et al. Impact on short-lived climate forcers increases projected warming due to deforestation. Nat. Commun. 9, 157 (2018).

    Article  CAS  Google Scholar 

  18. Richards, K. R. & Huebner, G. E. Evaluating protocols and standards for forest carbon-offset programs, part A: additionality, baselines and permanence. Carbon Manag. 3, 393–410 (2012).

    Article  CAS  Google Scholar 

  19. Richards, K. R. & Huebner, G. E. Evaluating protocols and standards for forest carbon-offset programs, part B: leakage assessment, wood products, validation and verification. Carbon Manag. 3, 411–425 (2012).

    Article  CAS  Google Scholar 

  20. Nolan, C. J., Field, C. B. & Mach, K. J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2, 436–446 (2021).

    Article  Google Scholar 

  21. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

    Article  Google Scholar 

  22. Zickfeld, K. et al. Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).

    Article  Google Scholar 

  23. MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987–3016 (2020).

    Article  Google Scholar 

  24. Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science https://doi.org/10.1126/science.aaz7005 (2020).

    Article  Google Scholar 

  25. A Research Strategy for Ocean-Based Carbon Dioxide Removal and Sequestration (National Academies, 2021).

  26. Babiker, M. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) 1245–1354 (IPCC, Cambridge Univ. Press, 2022).

  27. van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    Article  Google Scholar 

  28. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  29. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article  Google Scholar 

  30. Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).

    Article  Google Scholar 

  31. Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).

    Article  CAS  Google Scholar 

  32. Fan, L. et al. Siberian carbon sink reduced by forest disturbances. Nat. Geosci. 16, 56–62 (2023).

    Article  CAS  Google Scholar 

  33. Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article  CAS  Google Scholar 

  34. Canadell, J. G. & Jackson, R. B. Ecosystem Collapse and Climate Change (Springer Nature, 2021).

    Book  Google Scholar 

  35. Minx, J. C. et al. Negative emissions - part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Article  Google Scholar 

  36. Alcalde, J. et al. Estimating geological CO2 storage security to deliver on climate mitigation. Nat. Commun. 9, 2201 (2018).

    Article  Google Scholar 

  37. Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    Article  CAS  Google Scholar 

  38. Matthews, H. D. et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun. Earth Environ. 3, 65 (2022).

    Article  Google Scholar 

  39. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  40. Cerasoli, S., Yin, J. & Porporato, A. Cloud cooling effects of afforestation and reforestation at midlatitudes. Proc. Natl Acad. Sci. USA 118, e2026241118 (2021).

    Article  CAS  Google Scholar 

  41. Duveiller, G. et al. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 12, 4337 (2021).

    Article  CAS  Google Scholar 

  42. Mykleby, P. M., Snyder, P. K. & Twine, T. E. Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests. Geophys. Res. Lett. 44, 2493–2501 (2017).

    Article  CAS  Google Scholar 

  43. Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).

    Article  Google Scholar 

  44. De Hertog, S. J. et al. The biogeophysical effects of idealized land cover and land management changes in Earth system models. Earth Syst. Dynam. 14, 629–667 (2023).

    Article  Google Scholar 

  45. Georgescu, M., Lobell, D. B. & Field, C. B. Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl Acad. Sci. USA 108, 4307–4312 (2011).

    Article  CAS  Google Scholar 

  46. Wang, J. et al. Global cooling induced by biophysical effects of bioenergy crop cultivation. Nat. Commun. 12, 7255 (2021).

    Article  CAS  Google Scholar 

  47. Hirsch, A. L. et al. Biogeophysical impacts of land-use change on climate extremes in low-emission scenarios: results from HAPPI-Land. Earth Future 6, 396–409 (2018).

    Article  CAS  Google Scholar 

  48. Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).

    Article  CAS  Google Scholar 

  49. Davin, E. L., Seneviratne, S. I., Ciais, P., Olioso, A. & Wang, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl Acad. Sci. USA 111, 9757–9761 (2014).

    Article  CAS  Google Scholar 

  50. Genesio, L. et al. Surface albedo following biochar application in durum wheat. Environ. Res. Lett. 7, 014025 (2012).

    Article  Google Scholar 

  51. Zhang, Y. et al. Response of surface albedo and soil carbon dioxide fluxes to biochar amendment in farmland. J. Soils Sediment. 18, 1590–1601 (2018).

    Article  CAS  Google Scholar 

  52. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies, 2018).

  53. Oschlies, A. Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice. Geophys. Res. Lett. 37, L04701 (2010).

    Article  Google Scholar 

  54. Keller, D. P., Feng, E. Y. & Oschlies, A. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun. 5, 3304 (2014).

    Article  Google Scholar 

  55. Mei, K. et al. Stimulation of N2O emission by conservation tillage management in agricultural lands: a meta-analysis. Soil Tillage Res. 182, 86–93 (2018).

    Article  Google Scholar 

  56. Guenet, B. et al. Can N2O emissions offset the benefits from soil organic carbon storage? Glob. Change Biol. 27, 237–256 (2021).

    Article  CAS  Google Scholar 

  57. Jeffery, S., Verheijen, F. G. A., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016).

    Article  CAS  Google Scholar 

  58. Huang, Y. et al. Methane and nitrous oxide flux after biochar application in subtropical acidic paddy soils under tobacco-rice rotation. Sci. Rep. 9, 17277 (2019).

    Article  Google Scholar 

  59. Cayuela, M. L. et al. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric. Ecosyst. Environ. 191, 5–16 (2014).

    Article  CAS  Google Scholar 

  60. Kammann, C. et al. Biochar as a tool to teduce the agricultural greenhouse-gas burden – knowns, unknowns and future research needs. J. Environ. Eng. Landsc. Manag. 25, 114–139 (2017).

    Article  Google Scholar 

  61. Paustian, K., Larson, E., Kent, J., Marx, E. & Swan, A. Soil C sequestration as a biological negative emission strategy. Front. Clim. 1, 8 (2019).

    Article  Google Scholar 

  62. Law, C. S. & Ling, R. D. Nitrous oxide flux and response to increased iron availability in the Antarctic Circumpolar Current. Deep Sea Res. Pt II 48, 2509–2527 (2001).

    Article  CAS  Google Scholar 

  63. Oschlies, A., Koeve, W., Rickels, W. & Rehdanz, K. Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences 7, 4017–4035 (2010).

    Article  CAS  Google Scholar 

  64. Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. 10, 7325 (2020).

    Article  CAS  Google Scholar 

  65. Creutzig, F. et al. The mutual dependence of negative emission technologies and energy systems. Energy Environ. Sci. 12, 1805–1817 (2019).

    Article  CAS  Google Scholar 

  66. Boucher, O. et al. Reversibility in an Earth System model in response to CO2 concentration changes. Env. Res. Lett. 7, 24013 (2012).

    Article  Google Scholar 

  67. Zickfeld, K., MacDougall, A. H. & Matthews, H. D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 11, 055006 (2016).

    Article  Google Scholar 

  68. Koven, C. D., Sanderson, B. M. & Swann, A. L. S. Much of zero emissions commitment occurs before reaching net zero emissions. Environ. Res. Lett. 18, 14017 (2023).

    Article  Google Scholar 

  69. Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate-carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).

    Article  CAS  Google Scholar 

  70. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).

    Article  CAS  Google Scholar 

  71. Sarmiento, J. L., Le Quéré, C. & Pacala, S. W. Limiting future atmospheric carbon dioxide. Glob. Biogeochem. Cycles 9, 121–137 (1995).

    Article  CAS  Google Scholar 

  72. Compliance Offset Protocol U.S. Forest Projects (California Environmental Protection Agency, California Air Resources Board, 2015).

  73. McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article  CAS  Google Scholar 

  74. Ruseva, T. et al. Rethinking standards of permanence for terrestrial and coastal carbon: implications for governance and sustainability. Curr. Opin. Environ. Sustain. 45, 69–77 (2020).

    Article  Google Scholar 

  75. Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).

    Article  CAS  Google Scholar 

  76. Parisa, Z., Marland, E., Sohngen, B., Marland, G. & Jenkins, J. The time value of carbon storage. For. Policy Econ. 144, 102840 (2022).

    Article  Google Scholar 

  77. Kirschbaum, M. U. F. Temporary carbon sequestration cannot prevent climate change. Mitig. Adapt. Strateg. Glob. Change 11, 1151–1164 (2006).

    Article  Google Scholar 

  78. Chay, F. et al. Unpacking ton-year accounting. Carbon Plan https://carbonplan.org/research/ton-year-explainer (2022).

  79. Fankhauser, S. et al. The meaning of net zero and how to get it right. Nat. Clim. Change 12, 15–21 (2022).

    Article  Google Scholar 

  80. Allen, M. R. et al. Net zero: science, origins, and implications. Annu. Rev. Environ. Resour. 47, 849–887 (2022).

    Article  Google Scholar 

  81. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  CAS  Google Scholar 

  82. Matthews, H. D., Zickfeld, K., Koch, A. & Luers, A. Accounting for the climate benefit of temporary carbon storage in nature. Nat. Commun. 14, 5485 (2023).

    Article  CAS  Google Scholar 

  83. Bright, R. M., Bogren, W., Bernier, P. & Astrup, R. Carbon-equivalent metrics for albedo changes in land management contexts: relevance of the time dimension. Ecol. Appl. 26, 1868–1880 (2016).

    Article  Google Scholar 

  84. Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2022).

    Article  Google Scholar 

  85. Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    Article  CAS  Google Scholar 

  86. Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The potential for ocean-based climate action: negative emissions technologies and beyond. Front. Clim. 2, 2020 (2021).

    Article  Google Scholar 

  87. Szopa, S. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 817–922 (IPCC, Cambridge Univ. Press, 2021).

  88. Allen, M. R. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).

    Article  CAS  Google Scholar 

  89. Rogelj, J. & Schleussner, C.-F. Unintentional unfairness when applying new greenhouse gas emissions metrics at country level. Environ. Res. Lett. 14, 114039 (2019).

    Article  CAS  Google Scholar 

  90. Collins, W. J., Frame, D. J., Fuglestvedt, J. S. & Shine, K. P. Stable climate metrics for emissions of short and long-lived species—combining steps and pulses. Environ. Res. Lett. 15, 24018 (2020).

    Article  CAS  Google Scholar 

  91. Folberth, G. A. et al. Description and evaluation of an emission-driven and fully coupled methane cycle in UKESM1. J. Adv. Model. Earth Syst. 14, e2021MS002982 (2022).

    Article  Google Scholar 

  92. Nzotungicimpaye, C.-M. et al. WETMETH 1.0: a new wetland methane model for implementation in Earth system models. Geosci. Model Dev. 14, 6215–6240 (2021).

    Article  CAS  Google Scholar 

  93. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 3−32 (Cambridge Univ. Press, 2021).

  94. Matthews, J. B. R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 2215–2256 (IPCC, Cambridge Univ. Press, 2021).

  95. Mengis, N. et al. Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10). Geosci. Model Dev. 13, 4183–4204 (2020).

    Article  CAS  Google Scholar 

  96. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev/1 (UNFCCC, 2015).

Download references

Acknowledgements

K.Z., A.J.M. and H.D.M. acknowledge support from the Natural Sciences and Engineering Research Council of Canada’s Discovery Grant Program (grant numbers RGPIN-2018-06881 and RGPIN-2017-04159) and the Government of Canada’s Climate Action and Awareness Fund (grant number 1000497419). J.G.C. thanks the Australian National Environmental Science Program Climate Systems Hub for support. R.B.J. acknowledges support from the U.N. Environment Programme. C.D.J. was supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (grant number GA01101). C.D.J., J.R. and S.Z. were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement number 101003536 (ESM2025—Earth System Models for the Future). G.P.P. and S.Z. were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement number 821003 (4C—Climate-Carbon Interactions in the Current Century). A.L. was supported by the ACCC Flagship funded by the Academy of Finland (grant numbers 337549 and 337552 from the University of Helsinki and Finnish Meteorological Institute, respectively).

Author information

Authors and Affiliations

Authors

Contributions

K.Z. conceived the manuscript and led the writing. All authors contributed to the content, framing and structure of the manuscript. A.J.M. carried out the model simulations and produced Figs. 1 and 3.

Corresponding author

Correspondence to Kirsten Zickfeld.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Michael Windisch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods.

Source data

Source Data Fig. 3

Climate model data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zickfeld, K., MacIsaac, A.J., Canadell, J.G. et al. Net-zero approaches must consider Earth system impacts to achieve climate goals. Nat. Clim. Chang. 13, 1298–1305 (2023). https://doi.org/10.1038/s41558-023-01862-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01862-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing