Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thunderstorm straight line winds intensify with climate change

Abstract

Straight line winds (SLWs), or non-tornadic thunderstorm winds, are causing widespread damage in many regions around the world. These powerful gusts are associated with strong downdraughts in thunderstorms, rear inflow jets and mesovortices. Despite their significance, our understanding of climate change effects on SLWs remains limited. Here, focusing on the central USA, a global hot spot for SLWs, I use observations, high-resolution modelling and theoretical considerations to show that SLWs have intensified over the past 40 years. Theoretical considerations suggest that SLWs should intensify at a rate of ~7.5% °C−1, yet the observed rates show a more pronounced increase of ~13% °C−1. The simulation results indicate a 4.8 ± 1.2-fold increase in the geographical extent affected by SLWs during the study period. These findings underscore the importance of incorporating intensifying SLWs into climate change adaptation planning to ensure the development of resilient future infrastructure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kilometre-scale climate models are needed to simulate SLWs.
Fig. 2: The C-404 simulation reproduces observed characteristics in convective and non-convective winds.
Fig. 3: SLW-producing environments became more frequent.
Fig. 4: Raising temperatures increases theoretical surface peak wind speeds in SLW environments.
Fig. 5: Extreme SLWs intensify with climate change.

Similar content being viewed by others

Data availability

The HadISD dataset is available from https://www.metoffice.gov.uk/hadobs/hadisd/, the ASOS data from https://www.ncei.noaa.gov/products/land-based-station/automated-surface-weather-observing-systems, the GridSat data are accessible from https://www.ncdc.noaa.gov/gridsat/, the ERA5 reanalysis is available from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels and the C-404 output can be accessed from https://rda.ucar.edu/datasets/ds559.0/ ref. 93.

Code availability

The code for the statistical analysis and visualization of data in this document can be accessed from https://github.com/AndreasPrein/Thunderstorm_Downbursts_Climate_Change ref. 85.

References

  1. Solari, G. Thunderstorm downbursts and wind loading of structures: progress and prospect. Front. Built Environ. 6, 63 (2020).

    Article  Google Scholar 

  2. Lu, N.-Y., Hawbecker, P., Basu, S. & Manuel, L. On wind turbine loads during thunderstorm downbursts in contrasting atmospheric stability regimes. Energies 12, 2773 (2019).

    Article  Google Scholar 

  3. Oliver, S., Moriarty, W. & Holmes, J. A risk model for design of transmission line systems against thunderstorm downburst winds. Eng. Struct. 22, 1173–1179 (2000).

    Article  Google Scholar 

  4. Fortuin, C. C., Montes, C. R., Vogt, J. T. & Gandhi, K. J. Predicting risks of tornado and severe thunderstorm damage to southeastern US forests. Landsc. Ecol. 37, 1905–1919 (2022).

    Article  Google Scholar 

  5. Ashley, W. S. & Mote, T. L. Derecho hazards in the United States. Bull. Am. Meteorol. Soc. 86, 1577–1592 (2005).

    Article  Google Scholar 

  6. Pacey, G. P., Schultz, D. M. & Garcia-Carreras, L. Severe convective windstorms in Europe: climatology, preconvective environments, and convective mode. Weather Forecast. 36, 237–252 (2021).

    Article  Google Scholar 

  7. Brown, A. & Dowdy, A. Severe convection-related winds in Australia and their associated environments. J. South. Hemisph. Earth Syst. Sci. 71, 30–52 (2021).

    Article  Google Scholar 

  8. Gensini, V. A., Haberlie, A. M. & Marsh, P. T. Practically perfect hindcasts of severe convective storms. Bull. Am. Meteorol. Soc. 101, E1259–E1278 (2020).

    Article  Google Scholar 

  9. Lombardo, F. T. & Zickar, A. S. Characteristics of measured extreme thunderstorm near-surface wind gusts in the United States. J. Wind Eng. Ind. Aerodyn. 193, 103961 (2019).

    Article  Google Scholar 

  10. Trapp, R. J., Wheatley, D. M., Atkins, N. T., Przybylinski, R. W. & Wolf, R. Buyer beware: some words of caution on the use of severe wind reports in postevent assessment and research. Weather Forecast. 21, 408–415 (2006).

    Article  Google Scholar 

  11. Edwards, R., Allen, J. T. & Carbin, G. W. Reliability and climatological impacts of convective wind estimations. J. Appl. Meteorol. Climatol. 57, 1825–1845 (2018).

    Article  Google Scholar 

  12. Taszarek, M. et al. Severe convective storms across Europe and the United States. Part I: Climatology of lightning, large hail, severe wind, and tornadoes. J. Clim. 33, 10239–10261 (2020).

    Article  Google Scholar 

  13. Corfidi, S. F., Coniglio, M. C., Cohen, A. E. & Mead, C. M. A proposed revision to the definition of “derecho". Bull. Am. Meteorol. Soc. 97, 935–949 (2016).

    Article  Google Scholar 

  14. Wakimoto, R. M. & Bringi, V. Dual-polarization observations of microbursts associated with intense convection: the 20 July storm during the MIST project. Mon. Weather Rev. 116, 1521–1539 (1988).

    Article  Google Scholar 

  15. Fujita, T. T. Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci. 38, 1511–1534 (1981).

    Article  Google Scholar 

  16. Wakimoto, R. M. Forecasting dry microburst activity over the high plains. Mon. Weather Rev. 113, 1131–1143 (1985).

    Article  Google Scholar 

  17. Johns, R. H. & Hirt, W. D. Derechos: widespread convectively induced windstorms. Weather Forecast. 2, 32–49 (1987).

    Article  Google Scholar 

  18. Evans, J. S. & Doswell, C. A. Examination of derecho environments using proximity soundings. Weather Forecast. 16, 329–342 (2001).

    Article  Google Scholar 

  19. Romanic, D., Taszarek, M. & Brooks, H. Convective environments leading to microburst, macroburst and downburst events across the United States. Weather Clim. Extremes 37, 100474 (2022).

    Article  Google Scholar 

  20. Johns, R. H. & Doswell, C. A. III Severe local storms forecasting. Weather Forecast. 7, 588–612 (1992).

    Article  Google Scholar 

  21. Browning, K. A. & Ludlam, F. H. Airflow in convective storms. Q. J. R. Meteorol. Soc. 88, 117–135 (1962).

    Article  Google Scholar 

  22. Hookings, G. Precipitation-maintained downdrafts. J. Appl. Meteorol. Climatol. 4, 190–195 (1965).

    Article  Google Scholar 

  23. Prein, A. F. et al. Increased rainfall volume from future convective storms in the US. Nat. Clim. Change 7, 880–884 (2017).

    Article  Google Scholar 

  24. Hoogewind, K. A., Baldwin, M. E. & Trapp, R. J. The impact of climate change on hazardous convective weather in the United States: insight from high-resolution dynamical downscaling. J. Clim. 30, 10081–10100 (2017).

    Article  Google Scholar 

  25. Trapp, R. J., Hoogewind, K. A. & Lasher-Trapp, S. Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Clim. 32, 5493–5509 (2019).

    Article  Google Scholar 

  26. Haberlie, A. M., Ashley, W. S., Battisto, C. M. & Gensini, V. A. Thunderstorm activity under intermediate and extreme climate change scenarios. Geophys. Res. Lett. 49, e2022GL098779 (2022).

    Article  Google Scholar 

  27. Ashley, W. S., Haberlie, A. M. & Gensini, V. A. The future of supercells in the United States. Bull. Am. Meteorol. Soc. 104, E1–E21 (2023).

    Article  Google Scholar 

  28. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  29. Rasmussen, K. L., Prein, A. F., Rasmussen, R. M., Ikeda, K. & Liu, C. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Clim. Dyn. 55, 383–408 (2020).

    Article  Google Scholar 

  30. Chen, J., Dai, A., Zhang, Y. & Rasmussen, K. L. Changes in convective available potential energy and convective inhibition under global warming. J. Clim. 33, 2025–2050 (2020).

    Article  Google Scholar 

  31. Done, J. M., Lackmann, G. M. & Prein, A. F. The response of tropical cyclone intensity to changes in environmental temperature. Weather Clim. Dyn. 3, 693–711 (2022).

    Article  Google Scholar 

  32. Brooks, H. E. Severe thunderstorms and climate change. Atmos. Res. 123, 129–138 (2013).

    Article  Google Scholar 

  33. National Academies of Sciences, Engineering, and Medicine Attribution of Extreme Weather Events in the Context of Climate Change (National Academies Press, 2016).

  34. Dunn, R. J. et al. HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Climate 8, 1649–1679 (2012).

    Google Scholar 

  35. Dunn, R. J. et al. Reduction in reversal of global stilling arising from correction to encoding of calm periods. Environ. Res. Commun. 4, 061003 (2022).

    Article  Google Scholar 

  36. Rasmussen, R. M. et al. The NCAR/USGS 4-km long-term regional hydroclimate re-analysis over the CONUS. Bull. Am. Meteorol. Soc. 104 (2023).

  37. Wang, D., Giangrande, S. E., Feng, Z., Hardin, J. C. & Prein, A. F. Updraft and downdraft core size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons. J. Geophys. Res. Atmos. 125, e2019JD031774 (2020).

    Article  Google Scholar 

  38. Prein, A., Rasmussen, R., Wang, D. & Giangrande, S. Sensitivity of organized convective storms to model grid spacing in current and future climates. Phil. Trans. R. Soc. A 379, 20190546 (2021).

    Article  CAS  Google Scholar 

  39. Morrison, H. et al. Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst. 12, e2019MS001689 (2020).

    Article  Google Scholar 

  40. Weisman, M. L., Skamarock, W. C. & Klemp, J. B. The resolution dependence of explicitly modeled convective systems. Mon. Weather Rev. 125, 527–548 (1997).

    Article  Google Scholar 

  41. Prein, A. F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).

    Article  Google Scholar 

  42. Fujita, T. T. & Byers, H. R. Spearhead echo and downburst in the crash of an airliner. Mon. Weather Rev. 105, 129–146 (1977).

    Article  Google Scholar 

  43. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  44. Skamarock, W. C. & Klemp, J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008).

    Article  Google Scholar 

  45. Powers, J. G. et al. The weather research and forecasting model: overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 98, 1717–1737 (2017).

    Article  Google Scholar 

  46. Skamarock, W. C. Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weather Rev. 132, 3019–3032 (2004).

    Article  Google Scholar 

  47. El Rafei, M., Sherwood, S., Evans, J. P. & Ji, F. Analysis of extreme wind gusts using a high-resolution Australian regional reanalysis. Weather Clim. Extremes 39, 100537 (2023).

    Article  Google Scholar 

  48. Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N. & Ciais, P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 3, 756–761 (2010).

    Article  CAS  Google Scholar 

  49. Brooks, H. E., Lee, J. W. & Craven, J. P. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res. 67, 73–94 (2003).

    Article  Google Scholar 

  50. Sherburn, K. D., Parker, M. D., King, J. R. & Lackmann, G. M. Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Weather Forecast. 31, 1899–1927 (2016).

    Article  Google Scholar 

  51. Moncrieff, M. W. & Miller, M. J. The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 102, 373–394 (1976).

    Article  Google Scholar 

  52. Markowski, P. & Richardson, Y. Mesoscale Meteorology in Midlatitudes (John Wiley & Sons, 2011).

  53. Emanuel, K. A. et al. Atmospheric convection (Oxford Univ. Press, 1994).

  54. Gilmore, M. S. & Wicker, L. J. The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Weather Rev. 126, 943–958 (1998).

    Article  Google Scholar 

  55. Bryan, G. H. & Parker, M. D. Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Weather Rev. 138, 4076–4097 (2010).

    Article  Google Scholar 

  56. Rotunno, R., Klemp, J. B. & Weisman, M. L. A theory for strong, long-lived squall lines. J. Atmos. Sci. 45, 463–485 (1988).

    Article  Google Scholar 

  57. Atkins, N. T. & St. Laurent, M. Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Weather Rev. 137, 1497–1513 (2009).

    Article  Google Scholar 

  58. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Article  Google Scholar 

  59. Ghil, M. & Lucarini, V. The physics of climate variability and climate change. Rev. Mod. Phys. 92, 035002 (2020).

    Article  CAS  Google Scholar 

  60. Doswell, C. A. III & Evans, J. S. Proximity sounding analysis for derechos and supercells: an assessment of similarities and differences. Atmos. Res. 67, 117–133 (2003).

    Article  Google Scholar 

  61. Masson-Delmotte, V. et al. IPCC Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2021).

  62. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  63. Clausius, R. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Ann. der Phys. 155, 368–397 (1850).

    Article  Google Scholar 

  64. Wuebbles, D. et al. Climate Science Special Report: Fourth National Climate Assessment (NCA4) Vol. I (2017).

  65. Fujita, T. T. Manual of Downburst Identification for Project NIMROD (1978).

  66. Atkins, N. T., Bouchard, C. S., Przybylinski, R. W., Trapp, R. J. & Schmocker, G. Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Weather Rev. 133, 2275–2296 (2005).

    Article  Google Scholar 

  67. Prein, A. F. & Heymsfield, A. J. Increased melting level height impacts surface precipitation phase and intensity. Nat. Clim. Change 10, 771–776 (2020).

    Article  CAS  Google Scholar 

  68. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article  CAS  Google Scholar 

  69. Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A 475, 20190013 (2019).

    Article  Google Scholar 

  70. Federal Meteorological Handbook No. 1: Surface Weather Observations and Reports (NOAA, 2019); https://www.icams-portal.gov/resources/ofcm/fmh/FMH1/fmh1_2019.pdf

  71. Dunn, R., Willett, K., Morice, C. & Parker, D. Pairwise homogeneity assessment of HadISD. Climate 10, 1501–1522 (2014).

    Google Scholar 

  72. Guide to Instruments and Methods of Observation (WMO, 2018); https://library.wmo.int/index.php

  73. Ramon, J., Lledó, L., Torralba, V., Soret, A. & Doblas-Reyes, F. J. What global reanalysis best represents near-surface winds? Q. J. R. Meteorol. Soc. 145, 3236–3251 (2019).

    Article  Google Scholar 

  74. Olauson, J. ERA5: the new champion of wind power modelling? Renew. Energy 126, 322–331 (2018).

    Article  Google Scholar 

  75. Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).

    Article  Google Scholar 

  76. Liu, C. et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 49, 71–95 (2017).

    Article  Google Scholar 

  77. Barlage, M., Chen, F., Rasmussen, R., Zhang, Z. & Miguez-Macho, G. The importance of scale-dependent groundwater processes in land–atmosphere interactions over the central United States. Geophys. Res. Lett. 48, e2020GL092171 (2021).

    Article  Google Scholar 

  78. Thompson, G., Field, P. R., Rasmussen, R. M. & Hall, W. D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 136, 5095–5115 (2008).

    Article  Google Scholar 

  79. Hong, S.-Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).

    Article  Google Scholar 

  80. Niu, G.-Y. et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 116 (2011).

  81. Yang, Z.-L. et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 116 (2011).

  82. Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res. Atmos. 112 (2007).

  83. Iacono, M. J. et al. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 113 (2008).

  84. von Storch, H., Langenberg, H. & Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 128, 3664–3673 (2000).

    Article  Google Scholar 

  85. Pein, A. F. AndreasPrein/Thunderstorm_Downbursts_Climate_Change: V1.0. Zenodo https://doi.org/10.5281/zenodo.7688306 (2023).

  86. wrf-python https://wrf-python.readthedocs.io/en/latest/ (WRF-Python Development Team, 2023).

  87. Kastman, J., Market, P. & Fox, N. Dynamic ensemble analysis of frontal placement impacts in the presence of elevated thunderstorms during PRECIP events. Atmosphere 9, 339 (2018).

    Article  Google Scholar 

  88. Tompkins, A. M. Organization of tropical convection in low vertical wind shears: the role of cold pools. J. Atmos. Sci. 58, 1650–1672 (2001).

    Article  Google Scholar 

  89. Feng, Z. et al. Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst. 7, 357–381 (2015).

    Article  Google Scholar 

  90. Feng, Z. et al. A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos. 126, e2020JD034202 (2021).

    Article  Google Scholar 

  91. Wu, X. & Yan, J. Estimating the outgoing longwave radiation from the FY-3B satellite visible infrared radiometer Channel 5 radiance observations. Chin. Sci. Bull. 56, 3480–3485 (2011).

    Article  Google Scholar 

  92. Knapp, K. R. et al. Globally gridded satellite observations for climate studies. Bull. Am. Meteorol. Soc. 92, 893–907 (2011).

    Article  Google Scholar 

  93. Rasmussen, R. M. et al. Four-Kilometer Long-Term Regional Hydroclimate Reanalysis over the Conterminous United States (CONUS), 1979–2020 (NCAR, 2023); https://rda.ucar.edu/datasets/ds559.0/

Download references

Acknowledgements

I thank the US Geological Survey for providing computing resources on their Denali HPC system. I acknowledge high-performance computing support from Cheyenne (https://doi.org/10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory. NCAR is sponsored by the National Science Foundation under Cooperative Agreement 1852977. I acknowledge support from the MIT Climate Grand Challenge on Weather and Climate Extremes. I also thank K. Ikeda and C. Liu for their efforts in creating the C-404 dataset.

Author information

Authors and Affiliations

Authors

Contributions

A.F.P. designed the study, collected the observational and modelling datasets, performed the analyses and wrote the manuscript.

Corresponding author

Correspondence to Andreas F. Prein.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Casey Burleyson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prein, A.F. Thunderstorm straight line winds intensify with climate change. Nat. Clim. Chang. 13, 1353–1359 (2023). https://doi.org/10.1038/s41558-023-01852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01852-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing