Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Warming and lateral shift of the Gulf Stream from in situ observations since 2001

An Author Correction to this article was published on 08 April 2024

This article has been updated

Abstract

As the poleward-flowing western boundary current of the North Atlantic ocean, the Gulf Stream plays a key role in the climate system. Here we show that from 2001 to 2023, the Gulf Stream west of 68° W has experienced both surface-intensified warming due to heat uptake at a rate exceeding the global average and a bulk lateral shift towards its cooler shoreward side at a rate of about 6 ± 3 km per decade. The Gulf Stream west of 68° W now has an O(10)-m-thick surface layer of warmer (by ~ 1 °C) and lighter (by ~ 0.3 kg m−3) water, contributing to increased upper ocean stratification. Our results rely on over 25,000 temperature and salinity profiles collected by autonomous profiling floats and underwater gliders in the region, allowing robust estimation of trends and clear attribution of observed changes to both ocean heat uptake and a lateral shift of the Gulf Stream.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gulf Stream observations used here.
Fig. 2: Example of observed trend in potential temperature.
Fig. 3: Vertical profiles of trends in Gulf Stream properties.

Similar content being viewed by others

Data availability

Spray glider observations used here are available as NetCDF files49,50. Argo data used here are available from ref. 51. Three-dimensional mean and annual cycle fields derived from glider observations are available as NetCDF files60. Plotting makes use of bathymetry from ref. 61 and routines from refs. 62,63.

Code availability

Matlab code used to estimate trends in Gulf Stream properties is available on Zenodo64.

Change history

References

  1. Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P. & Small, R. J. Influence of the Gulf Stream on the troposphere. Nature 452, 206–209 (2008).

    Article  CAS  Google Scholar 

  2. Kwon, Y.-O. et al. Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere-ocean interaction: a review. J. Clim. 23, 3249–3281 (2010).

    Article  Google Scholar 

  3. Palter, J. B. The role of the Gulf Stream in European climate. Annu. Rev. Mar. Sci. 7, 113–137 (2015).

    Article  Google Scholar 

  4. Whitt, D. B. in Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics (eds Nagai, T. et al) Ch. 4 (AGU, 2019).

  5. Munk, W. H. On the wind-driven ocean circulation. J. Meteorol. 7, 80–93 (1950).

    Article  Google Scholar 

  6. Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Article  Google Scholar 

  7. Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).

    Article  Google Scholar 

  8. Wu, L. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161–166 (2012).

    Article  CAS  Google Scholar 

  9. Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. 121, 118–132 (2016).

    Article  Google Scholar 

  10. Jahn, A. E. & Backus, R. H. On the mesopelagic fish faunas of slope water, Gulf Stream, and northern Sargasso Sea. Deep Sea Res. 23, 223–234 (1976).

    Google Scholar 

  11. Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).

    Article  CAS  Google Scholar 

  12. Seo, H. et al. Ocean mesoscale and frontal-scale ocean–atmosphere interactions and influence on large-scale climate: a review. J. Clim. 36, 1981–2013 (2023).

    Article  Google Scholar 

  13. Halkin, D. T. & Rossby, H. T. The structure and transport of the Gulf Stream at 73° W. J. Phys. Oceanogr. 15, 1439–1452 (1985).

    Article  Google Scholar 

  14. Johns, W. E., Shay, T. J., Bane, J. M. & Watts, D. R. Gulf Stream structure, transport, and recirculation near 68° W. J. Geophys. Res. 100, 817–838 (1995).

    Article  Google Scholar 

  15. Meinen, C. S. & Luther, D. S. Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge. Deep Sea Res. I 112, 137–154 (2016).

    Article  Google Scholar 

  16. Webster, F. A description of Gulf Stream meanders off Onslow Bay. Deep Sea Res. 8, 130–143 (1961).

    Google Scholar 

  17. Halliwell Jr, G. R. & Mooers, C. N. K. Meanders of the Gulf Stream downstream from Cape Hatteras 1975–1978. J. Phys. Oceanogr. 13, 1275–1292 (1983).

    Article  Google Scholar 

  18. Andres, M., Donohue, K. A. & Toole, J. M. The Gulf Stream’s path and time-averaged velocity structure and transport at 68.5° W and 70.3° W. Deep Sea Res. I 156, 103179 (2020).

    Article  Google Scholar 

  19. Chi, L., Wolfe, C. L. P. & Hameed, S. Has the Gulf Stream slowed or shifted in the altimetry era? Geophys. Res. Lett. 48, e2021GL093113 (2021).

    Article  Google Scholar 

  20. Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. 121, 4928–4945 (2016).

    Article  Google Scholar 

  21. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean Overturning Circulation. Nature 556, 191–196 (2018).

    Article  CAS  Google Scholar 

  22. Seidov, D., Mishonov, A., Reagan, J. & Parsons, R. Resilience of the Gulf Stream path on decadal and longer timescales. Sci. Rep. 9, 11549 (2019).

    Article  Google Scholar 

  23. Gonçalves Neto, A., Langan, J. A. & Palter, J. B. Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. Commun. Earth Environ. 2, 74 (2021).

    Article  Google Scholar 

  24. Bisagni, J. J., Gangopadhyay, A. & Sanchez-Franks, A. Secular change and inter-annual variability of the Gulf Stream position, 1993–2013, 70°–55° W. Deep Sea Res. I 125, 1–10 (2017).

  25. Dong, S., Baringer, M. O. & Goni, G. J. Slow down of the Gulf Stream during 1993–2016. Sci. Rep. 9, 6672 (2019).

    Article  Google Scholar 

  26. Johnson, G. C. et al. Argo–two decades: global oceanography, revolutionized. Annu. Rev. Mar. Sci. 14, 379–403 (2022).

    Article  Google Scholar 

  27. Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6, 145–153 (2016).

    Article  Google Scholar 

  28. Sherman, J., Davis, R. E., Owens, W. B. & Valdes, J. The autonomous underwater glider ‘Spray’. IEEE J. Ocean. Eng. 26, 437–446 (2001).

    Article  Google Scholar 

  29. Heiderich, J. & Todd, R. E. Along-stream evolution of Gulf Stream volume transport. J. Phys. Oceanogr. 50, 2251–2270 (2020).

    Article  Google Scholar 

  30. Todd, R. E. Gulf Stream mean and eddy kinetic energy: three-dimensional estimates from underwater glider observations. Geophys. Res. Lett. 48, e2020GL090281 (2021).

    Article  Google Scholar 

  31. Chen, Z. et al. Long-term SST variability on the northwest Atlantic continental shelf and slope. Geophys. Res. Lett. 47, e2019GL085455 (2020).

    Article  Google Scholar 

  32. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  33. Forsyth, J. S. T., Andres, M. & Gawarkiewicz, G. G. Recent accelerated warming of the continental shelf off New Jersey: observations from the CMV Oleander expendable bathythermograph line. J. Geophys. Res. 120, 2370–2384 (2015).

    Article  Google Scholar 

  34. Le Bras, I. A., Yashayaev, I. & Toole, J. M. Tracking Labrador Sea water property signals along the Deep Western Boundary Current. J. Geophys. Res. 122, 5348–5366 (2017).

    Article  Google Scholar 

  35. Johnson, G. C., Lyman, J. M. & Loeb, N. G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Change 6, 639–640 (2016).

    Article  Google Scholar 

  36. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2,000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  37. Bates, N. R. Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean. Biogeosciences 9, 2649–2659 (2012).

    Article  CAS  Google Scholar 

  38. Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).

    Article  Google Scholar 

  39. Sallée, J.-B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).

    Article  Google Scholar 

  40. Lee, T. & Cornillon, P. Propagation and growth of Gulf Stream meanders between 75° and 45° W. J. Phys. Oceanogr. 26, 225–241 (1996).

    Article  Google Scholar 

  41. Gawarkiewicz, G. G., Todd, R. E., Plueddemann, A. J., Andres, M. & Manning, J. P. Direct interaction between the Gulf Stream and the shelfbreak south of New England. Sci. Rep. 2, 553 (2012).

  42. Andres, M. On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras. Geophys. Res. Lett. 43, 9836–9842 (2016).

    Article  Google Scholar 

  43. Seidov, D., Mishonov, A. & Parsons, R. Recent warming and decadal variability of Gulf of Maine and slope water. Limnol. Oceanogr. 66, 3472–3488 (2021).

    Article  Google Scholar 

  44. Harden, B., Gawarkiewicz, G. G. & Infante, M. Trends in physical properties at the southern New England shelf break. J. Geophys. Res. 125, e2019JC015784 (2020).

    Article  Google Scholar 

  45. Kwon, Y.-O. & Joyce, T. M. Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio extenstion variability. J. Clim. 26, 9839–9859 (2013).

    Article  Google Scholar 

  46. Seo, H., Kwon, Y.-O., Joyce, T. M. & Ummenhofer, C. C. On the predominant nonlinear response of the extratropical atmosphere to meridional shifts of the Gulf Stream. J. Clim. 30, 9679–9702 (2017).

    Article  Google Scholar 

  47. Johns, E., Watts, D. R. & Rossby, H. T. A test of geostrophy in the Gulf Stream. J. Geophys. Res. 94, 3211–3222 (1989).

    Article  Google Scholar 

  48. Jayne, S. R. et al. The Argo program: present and future. Oceanography 30, 18–28 (2017).

    Article  Google Scholar 

  49. Todd, R. E. & Owens, W. B. Gliders in the Gulf Stream [Data set]. Scripps Institution of Oceanography, Instrument Development Group https://doi.org/10.21238/S8SPRAY2675 (2016).

  50. Todd, R. E. Spray glider observations in support of PEACH [Data set]. Scripps Institution of Oceanography, Instrument Development Group https://doi.org/10.21238/S8SPRAY0880 (2020).

  51. Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC)–snapshot of Argo GDAC of July 09st 2023. SEANOE https://doi.org/10.17882/42182#103614 (2023).

  52. Fofonoff, N. P. Physical properties of seawater: a new salinity scale and equation of state for seawater. J. Geophys. Res. 90, 3332–3342 (1985).

    Article  Google Scholar 

  53. Rudnick, D. L., Zaba, K. D., Todd, R. E. & Davis, R. E. A climatology of the California Current system from a network of underwater gliders. Prog. Oceanogr. 154, 64–106 (2017).

    Article  Google Scholar 

  54. SSALTO/DUACS. Global ocean gridded L4 sea surface heights and derived variables reprocessed 1993 ongoing. Copernicus https://doi.org/10.48670/moi-00148 (2023).

  55. SSALTO/DUACS. Global ocean gridded L4 sea surface heights and derived variables Nrt. Copernicus https://doi.org/10.48670/moi-00149 (2023).

  56. Tellinghuisen, J. Statistical error propagation. J. Phys. Chem. A 105, 3917–3921 (2001).

    Article  CAS  Google Scholar 

  57. Talley, L. D., Pickard, G. L., Emery, W. J. & Swift, J. H. Descriptive Physical Oceanography: An Introduction 6th edn (Academic Press, 2011).

  58. Gill, A. E. Atmosphere–Ocean Dynamics Vol. 30 (Academic Press, 1982).

  59. Munk, W. in Internal Waves and Small-Scale Processes (eds Warren, B. & Wunsch, C.) Ch. 9 (Massachusetts Institute of Technology, 1981).

  60. Todd, R. E. & Ren, A. S. Gulf Stream mean and annual cycle from Spray underwater glider measurements [Data set]. Scripps Institution of Oceanography, Instrument Development Group. https://doi.org/10.21238/S8TC9W (2023).

  61. Smith, W. & Sandwell, D. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1957–1962 (1997).

    Article  Google Scholar 

  62. Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography: guidelines for effective and accurate colormap selection. Oceanography 29, 9–13 (2016).

    Article  Google Scholar 

  63. Pawlowicz, R. M_Map: a mapping package for MATLAB, v1.4m www.eoas.ubc.ca/~rich/map.html (2020).

  64. Todd, R. E. Matlab code for computing Gulf Stream trends in Todd & Ren (2023, Nature Climate Change). Zenodo https://doi.org/10.5281/zenodo.8298169 (2023).

Download references

Acknowledgements

Spray glider operations in the Gulf Stream have relied on P. Deane at the Woods Hole Oceanographic Institution (WHOI) and the Instrument Development Group at the Scripps Institution of Oceanography. Glider-based surveys have been supported by the National Science Foundation (awards OCE-0220769 to W. B. Owens; OCE-0220930 to R. E. Davis; OCE-1558521, OCE-1633911 and OCE-1923362), the Office of Naval Research (awards N00014-17-1-3040, N00014-17-1-2968, N00014-18-1-2425, N00014-21-1-2294), the National Oceanic and Atmospheric Administration Global Ocean Monitoring and Observing Program (awards NA14OAR4320158 and NA19OAR4320074, https://doi.org/10.13039/100018302), WHOI and Eastman, all to R.E.T. except as noted. A.S.R. was supported by the Postdoctoral Scholar Program at WHOI, with funding provided by the Doherty Foundation. The importance of the long-term efforts of the global Argo programme cannot be understated.

Author information

Authors and Affiliations

Authors

Contributions

R.E.T. conceived of the idea to analyse long-term trends in the data and led the glider data collection efforts. R.E.T. and A.S.R. developed and conducted the analysis methods. R.E.T. wrote the paper. R.E.T. and A.S.R. edited the paper.

Corresponding author

Correspondence to Robert E. Todd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Brad de Young and Afonso Gonçalves Neto for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todd, R.E., Ren, A.S. Warming and lateral shift of the Gulf Stream from in situ observations since 2001. Nat. Clim. Chang. 13, 1348–1352 (2023). https://doi.org/10.1038/s41558-023-01835-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01835-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing