Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergent biogeochemical risks from Arctic permafrost degradation

Abstract

The Arctic cryosphere is collapsing, posing overlapping environmental risks. In particular, thawing permafrost threatens to release biological, chemical and radioactive materials that have been sequestered for tens to hundreds of thousands of years. As these constituents re-enter the environment, they have the potential to disrupt ecosystem function, reduce the populations of unique Arctic wildlife and endanger human health. Here, we review the current state of the science to identify potential hazards currently frozen in Arctic permafrost. We also consider the cascading natural and anthropogenic processes that may compound the impacts of these risks, as it is unclear whether the highly adapted Arctic ecosystems have the resilience to withstand new stresses. We conclude by recommending research priorities to address these underappreciated risks.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hazard transport through Arctic ecosystems.
Fig. 2: Idealized permafrost ecosystem with potential hazard storage locations.
Fig. 3: Cross-section of model permafrost structure under different thaw regimes.

References

  1. 1.

    Mcguire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009). Details Arctic changes under RCP scenarios using a multi-model approach forecasting vegetation offsets of some carbon emissions.

    Article  Google Scholar 

  2. 2.

    Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).

    Article  Google Scholar 

  3. 3.

    Chadburn, S. et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14, 5143–5169 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Karjalainen, O. et al. Data descriptor: circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 6, 190037 (2019).

    Article  Google Scholar 

  5. 5.

    Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Abramov, A., Vishnivetskaya, T. & Rivkina, E. Are permafrost microorganisms as old as permafrost? FEMS Microbiol. Ecol. 97, fiaa260 (2021).

    CAS  Article  Google Scholar 

  7. 7.

    Ricketts, M. P. et al. The effects of warming and soil chemistry on bacterial community structure in Arctic tundra soils. Soil Biol. Biochem. 148, 107882 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020). Seminal paper that identifies abrupt permafrost thaw as an important mechanism in rapid Arctic change.

    CAS  Article  Google Scholar 

  10. 10.

    Nikrad, M. P., Kerkhof, L. J. & Aggblom, M. M. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol. Ecol. 92, fiw081 (2016).

    Article  CAS  Google Scholar 

  11. 11.

    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–24 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Anthony, K. W. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Article  CAS  Google Scholar 

  14. 14.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Hong, E., Perkins, R. & Trainor, S. Thaw settlement hazard of permafrost related to climate warming in Alaska. Arctic 67, 93–103 (2014).

    Article  Google Scholar 

  16. 16.

    Trofimenko, Y. V., Evgenev, G. I. & Shashina, E. V. Functional loss risks of highways in permafrost areas due to climate change. Procedia Eng. 189, 258–264 (2017).

    Article  Google Scholar 

  17. 17.

    Wurzbacher, C., Nilsson, R. H., Rautio, M. & Peura, S. Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds. ISME J. 11, 1938–1941 (2017).

    Article  Google Scholar 

  18. 18.

    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Walsh, M. G., De Smalen, A. W. & Mor, S. M. Climatic influence on anthrax suitability in warming northern latitudes. Sci. Rep. 8, 9269 (2018).

    Article  CAS  Google Scholar 

  21. 21.

    Zolkos, S. et al. Mercury export from Arctic great rivers. Environ. Sci. Technol. 54, 4140–4148 (2020).

    CAS  Article  Google Scholar 

  22. 22.

    Ewing, S. A. et al. Uranium isotopes and dissolved organic carbon in loess permafrost: modeling the age of ancient ice. Geochim. Cosmochim. Acta 152, 143–165 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Eriksson, M. On Weapons Plutonium in the Arctic Environment (Thule, Greenland). PhD thesis, Lund Univ. (2002).

  24. 24.

    Colgan, W. et al. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate. Geophys. Res. Lett. 43, 8091–8096 (2016).

    Article  Google Scholar 

  25. 25.

    Anisimov, O., Kokorev, V. & Zhiltcova, Y. Arctic ecosystems and their services under changing climate: predictive-modeling assessment. Geogr. Rev. 107, 108–124 (2017).

    Article  Google Scholar 

  26. 26.

    Pelletier, M., Allard, M. & Levesque, E. Ecosystem changes across a gradient of permafrost degradation in subarctic Québec (Tasiapik Valley, Nunavik, Canada). Arct. Sci. 5, 1–26 (2019).

    Article  Google Scholar 

  27. 27.

    Perryman, C. R. et al. Heavy metals in the Arctic: distribution and enrichment of five metals in Alaskan soils. PLoS ONE 15, e0233297 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Gilichinsky, D. A. & Rivkina, E. M. Permafrost microbiology. Encycl. Earth Sci. Ser. 6, 726–732 (1995). Details the (at the time) emergent field of permafrost microbiology, extremophilic species and future prospects for emergent microbes.

    Google Scholar 

  29. 29.

    Steven, B., Léveillé, R., Pollard, W. H. & Whyte, L. G. Microbial ecology and biodiversity in permafrost. Extremophiles 10, 259–267 (2006).

    Article  Google Scholar 

  30. 30.

    Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).

    Article  Google Scholar 

  31. 31.

    Mackelprang, R., Saleska, S. R., Jacobsen, C. S., Jansson, J. K. & Taş, N. Permafrost meta-omics and climate change. Annu. Rev. Earth Planet. Sci. 44, 439–462 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Graham, D. E. et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 6, 709–712 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).

    Article  Google Scholar 

  34. 34.

    Ren, J. et al. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: processes and mechanisms. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.10.019 (2016).

  35. 35.

    Dean, J. F. et al. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback. Environ. Res. Lett. 13, 34024 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Jeffries, M. O., Overland, J. E. & Perovich, D. K. The Arctic shifts to a new normal. Phys. Today 66, 35–40 (2013).

    Article  Google Scholar 

  37. 37.

    El-Sayed, A. & Kamel, M. Future threat from the past. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-11234-9 (2020).

  38. 38.

    Houwenhuyse, S., Macke, E., Reyserhove, L., Bulteel, L. & Decaestecker, E. Back to the future in a petri dish: origin and impact of resurrected microbes in natural populations. Evol. Appl. 11, 29–41 (2018).

    Article  Google Scholar 

  39. 39.

    Miner, K. R. et al. Organochlorine pollutants within a polythermal glacier in the Interior Eastern Alaska Range. Water 10, 1157 (2018).

    Google Scholar 

  40. 40.

    Li, F. et al. Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nat. Clim. Change 10, 1037–1044 (2020).

    CAS  Article  Google Scholar 

  41. 41.

    Eriksson, M., Lindahl, P., Roos, P., Dahlgaard, H. & Holm, E. U, Pu, and Am nuclear signatures of the thule hydrogen bomb debris. Environ. Sci. Technol. 42, 4717–4722 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Lind, O. C. et al. Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci. Total Environ. 376, 294–305 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    Slemmons, K. E. H., Saros, J. E. & Simon, K. The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ. Sci. Process. Impacts 15, 1794 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Bidleman, T. F., Jantunen, L. M., Kurt-Karakus, P. B. & Wong, F. Chiral persistent organic pollutants as tracers of atmospheric sources and fate: review and prospects for investigating climate change influences. Atmos. Pollut. Res. 3, 371–382 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Chen, M. et al. Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: insights into the impact of global warming on the cycling of emerging pollutants. J. Geophys. Res. Atmos. 124, 7442–7456 (2019).

    Article  Google Scholar 

  46. 46.

    Goodman, S. & Kertysova, K. The Nuclearisation of the Russian Arctic: New Reactors, New Risks (European Leadership Network, 2020); https://www.europeanleadershipnetwork.org/wp-content/uploads/2020/06/The-nuclearisation-of-the-Russian-Arctic-2.pdf

  47. 47.

    Byrne, S. et al. Persistent organochlorine pesticide exposure related to a formerly used defense site on St. Lawrence Island, Alaska: data from sentinel fish and human sera. Toxicol. Environ. Health 78, 37–54 (2015).

    Article  CAS  Google Scholar 

  48. 48.

    The National Academies of Sciences Understanding and Responding to Global Health Security Risks from Microbial Threats in the Arctic (National Academies Press, 2020); https://doi.org/10.17226/25887

  49. 49.

    Edwards, A. et al. Microbial genomics amidst the Arctic crisis. Microb. Genom. 6, e000375 (2020). Catalogues known genomic diversity, evolution dynamics and environment of Arctic microbes.

    Google Scholar 

  50. 50.

    Botnen, S. S., Mundra, S., Kauserud, H. & Eidesen, P. B. Glacier retreat in the high Arctic: opportunity or threat for ectomycorrhizal diversity? FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiaa171 (2020).

  51. 51.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W. & Cory, R. M. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8, 772 (2017).

    Article  CAS  Google Scholar 

  53. 53.

    Taş, N. et al. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nat. Commun. 9, 777 (2018).

    Article  CAS  Google Scholar 

  54. 54.

    Price, P. B. Microbial genesis, life and death in glacial ice. Can. J. Microbiol. 55, 1–11 (2009).

    CAS  Article  Google Scholar 

  55. 55.

    Niederberger, T. D. et al. Microbial characterization of a subzero, hypersaline methane seep in the Canadian high Arctic. ISME J. 4, 1326–1339 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    Malavin, S., Shmakova, L., Claverie, J. M. & Rivkina, E. Frozen Zoo: a collection of permafrost samples containing viable protists and their viruses. Biodivers. Data J. 8, e51586 (2020).

    Article  Google Scholar 

  57. 57.

    Gilichinsky, D., Rivkina, E., Shcherbakova, V., Laurinavichuis, K. & Tiedje, J. Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3, 331–341 (2003).

    CAS  Article  Google Scholar 

  58. 58.

    Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 4274–4279 (2014).

    CAS  Article  Google Scholar 

  59. 59.

    Legendre, M. et al. In-depth study of Mollivirus sibericum, a new 30,000-yold giant virus infecting Acanthamoeba. Proc. Natl Acad. Sci. USA 112, E5327–E5335 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    MacKelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011). Uses deep metagenomic sequencing to map the impacts of thaw on the Arctic microbial community structure and genomics.

    CAS  Article  Google Scholar 

  61. 61.

    Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking age. Science 369, eaaw8977 (2020).

    Article  CAS  Google Scholar 

  62. 62.

    Ng, T. F. F. et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc. Natl Acad. Sci. USA 111, 16842–16847 (2014).

    Article  CAS  Google Scholar 

  63. 63.

    Shmakova, L. et al. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Curr. Biol. 31, PR712–R713 (2021).

    Article  CAS  Google Scholar 

  64. 64.

    Siliakus, M. F., van der Oost, J. & Kengen, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Edwards, A. Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front. Earth Sci. 3, 12 (2015).

    Article  Google Scholar 

  66. 66.

    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).

    CAS  Article  Google Scholar 

  67. 67.

    Bale, N. J. et al. Fatty acid and hopanoid adaption to cold in the methanotroph Methylovulum psychrotolerans. Front. Microbiol. 10, 589 (2019).

    Article  Google Scholar 

  68. 68.

    Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).

    CAS  Article  Google Scholar 

  69. 69.

    Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Burkert, A., Douglas, T. A., Waldrop, M. P. & Mackelprang, R. Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence. Appl. Environ. Microbiol. 85, e02646–18 (2019).

    CAS  Article  Google Scholar 

  71. 71.

    Colangelo-Lillis, J., Eicken, H., Carpenter, S. D. & Deming, J. W. Evidence for marine origin and microbial-viral habitability of subzero hypersaline aqueous inclusions within permafrost near Barrow, Alaska. FEMS Microbiol. Ecol. 92, fiw053 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    CAS  Article  Google Scholar 

  73. 73.

    Zhong, Z.-P. et al. Viral ecogenomics of Arctic cryopeg brine and sea ice. mSystems https://doi.org/10.1128/mSystems.00246-20 (2020).

  74. 74.

    Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).

    CAS  Article  Google Scholar 

  75. 75.

    Aslam, S. N., Huber, C., Asimakopoulos, A. G., Steinnes, E. & Mikkelsen, Ø. Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian Arctic. Sci. Total Environ. 685, 1127–1138 (2019).

    CAS  Article  Google Scholar 

  76. 76.

    Winiger, P. et al. Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Sci. Adv. 5, eaau8052 (2019).

    CAS  Article  Google Scholar 

  77. 77.

    Villa, S., Migliorati, S., Monti, G. S., Holoubek, I. & Vighi, M. Risk of POP mixtures on the Arctic food chain. Environ. Toxicol. Chem. 36, 1181–1192 (2017).

    CAS  Article  Google Scholar 

  78. 78.

    Ma, J., Hung, H., Tian, C. & Kallenborn, R. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat. Clim. Change 1, 255–260 (2011).

    CAS  Article  Google Scholar 

  79. 79.

    Ji, X., Abakumov, E. & Polyakov, V. Assessments of pollution status and human health risk of heavy metals in permafrost-affected soils and lichens: a case-study in Yamal Peninsula, Russia Arctic. Hum. Ecol. Risk Assess. 25, 2142–2159 (2019).

    CAS  Article  Google Scholar 

  80. 80.

    Mu, C. et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 161, 54–60 (2019).

    CAS  Article  Google Scholar 

  81. 81.

    Brown, T. M., Macdonald, R. W., Muir, D. C. G. & Letcher, R. J. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s eastern Arctic. Sci. Total Environ. 618, 500–517 (2018).

    CAS  Article  Google Scholar 

  82. 82.

    Ferrario, C., Finizio, A. & Villa, S. Legacy and emerging contaminants in meltwater of three alpine glaciers. Sci. Total Environ. 574, 350–357 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Miner, K. R., Bogdal, C., Pavlova, P. A., Steinlin, C. & Kreutz, K. J. Quantitative screening level assessment of human risk from PCB in glacial meltwater: Silvretta Glacier, Swiss Alps. Ecotoxicol. Environ. Saf. 166, 251–258 (2018).

    CAS  Article  Google Scholar 

  84. 84.

    Octaviani, M., Stemmler, I., Lammel, G. & Graf, H. F. Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate. Environ. Sci. Technol. 49, 3593–3602 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    Nielsen, S. P., Iosjpe, M. & Strand, P. Collective doses to man from dumping of radioactive waste in the Arctic seas. Sci. Total Environ. 202, 135–146 (1997).

    CAS  Article  Google Scholar 

  86. 86.

    Eickmeyer, D. C. et al. Interactions of polychlorinated biphenyls and organochlorine pesticides with sedimentary organic matter of retrogressive thaw slump-affected lakes in the tundra uplands adjacent to the Mackenzie Delta, NT, Canada. J. Geophys. Res. G Biogeosci. 121, 411–421 (2016).

    CAS  Article  Google Scholar 

  87. 87.

    St Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic. Environ. Sci. Technol. 52, 14099–14109 (2018).

    Article  CAS  Google Scholar 

  88. 88.

    Birnbaum, L. S. When environmental chemicals act like uncontrolled medicine. Trends Endocrinol. Metab. 24, 321–323 (2013).

    CAS  Article  Google Scholar 

  89. 89.

    Potapowicz, J., Szumińska, D., Szopińska, M. & Polkowska, Ż. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: part I. Case study of Antarctica. Sci. Total Environ. 651, 1534–1548 (2019).

    CAS  Article  Google Scholar 

  90. 90.

    Kim, K.-S. et al. Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere 94, 151–157 (2014).

    CAS  Article  Google Scholar 

  91. 91.

    Knutsen, H. K. et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 16, e05194 (2018).

    Google Scholar 

  92. 92.

    Iszatt, N. et al. Prenatal and postnatal exposure to persistent organic pollutants and infant growth: a pooled analysis of seven European birth cohorts. Environ. Health Perspect. 123, 730–736 (2015).

    CAS  Article  Google Scholar 

  93. 93.

    Nadal, M., Marquès, M., Mari, M. & Domingo, J. L. Climate change and environmental concentrations of POPs: a review. Environ. Res. 143, 177–185 (2015).

    CAS  Article  Google Scholar 

  94. 94.

    Toxicological Profile for Lead (Agency for Toxic Substances and Disease Registry, 2020); https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf

  95. 95.

    Toxicological Profile for Mercury (Agency for Toxic Substances and Disease Registry, 1999); https://www.atsdr.cdc.gov/ToxProfiles/tp46.pdf

  96. 96.

    Toxicological Profile for Cadmium (Agency for Toxic Substances and Disease Registry, 2012); https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf

  97. 97.

    Halbach, K., Mikkelsen, Ø., Berg, T. & Steinnes, E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567–574 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Miner, K. R. et al. Legacy organochlorine pollutants in glacial watersheds: a review. Environ. Sci. Process. Impacts 19, 1474–1483 (2017).

    CAS  Article  Google Scholar 

  99. 99.

    Jamieson, H. E. The legacy of arsenic contamination from mining and processing refractory gold ore at Giant Mine, Yellowknife, Northwest Territories, Canada. Rev. Mineral. Geochem. 79, 533–551 (2014).

    Article  Google Scholar 

  100. 100.

    Tolvanen, A. et al. Mining in the Arctic environment—a review from ecological, socioeconomic and legal perspectives. J. Environ. Manag. 233, 832–844 (2019).

    Article  Google Scholar 

  101. 101.

    Liu, X., Jiang, S., Zhang, P. & Xu, L. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments. Environ. Pollut. 160, 161–168 (2012).

    CAS  Article  Google Scholar 

  102. 102.

    Antcibor, I. et al. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia. Biogeosciences 11, 1–15 (2014).

    Article  CAS  Google Scholar 

  103. 103.

    Lim, A. G. et al. A revised pan-Arctic permafrost soil Hg pool based on western Siberian peat Hg and carbon observations. Biogeosciences 17, 3083–3097 (2020).

    CAS  Article  Google Scholar 

  104. 104.

    Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).

    CAS  Article  Google Scholar 

  105. 105.

    Schaefer, K. et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 11, 4650 (2020). Estimates future releases of mercury from the permafrost from present to 2300, under RCP scenarios.

    CAS  Article  Google Scholar 

  106. 106.

    Jiskra, M. E., Sonke, J., Agnan, Y., Helmig, D. & Obrist, D. Insights from mercury stable isotopes on terrestrial-atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences 16, 4051–4064 (2019).

    CAS  Article  Google Scholar 

  107. 107.

    Blais, J. M. et al. Arctic seabirds transport marine-derived contaminants. Science 309, 445 (2005).

    CAS  Article  Google Scholar 

  108. 108.

    Brimble, S. K. et al. High Arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium, and zinc. Environ. Toxicol. Chem. 28, 2426–2433 (2009).

    CAS  Article  Google Scholar 

  109. 109.

    Michelutti, N. et al. Trophic position influences the efficacy of seabirds as metal biovectors. Proc. Natl Acad. Sci. USA 107, 10543–10548 (2010).

    CAS  Article  Google Scholar 

  110. 110.

    Mallory, M. L. & Braune, B. M. Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights. Mar. Pollut. Bull. 64, 1475–1484 (2012).

    CAS  Article  Google Scholar 

  111. 111.

    Lehnherr, I. Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environ. Rev. 22, 229–243 (2014).

    CAS  Article  Google Scholar 

  112. 112.

    Steinlin, C. et al. A temperate alpine glacier as a reservoir of polychlorinated biphenyls: model results of incorporation, transport, and release. Environ. Sci. Technol. 50, 5572–5579 (2016).

    CAS  Article  Google Scholar 

  113. 113.

    Pavlova, P. A., Schmid, P., Zennegg, M., Bogdal, C. & Schwikowski, M. Trace analysis of hydrophobic micropollutants in aqueous samples using capillary traps. Chemosphere 106, 51–56 (2014).

    CAS  Article  Google Scholar 

  114. 114.

    Blais, J. M. et al. Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio 30, 410–415 (2001).

    CAS  Article  Google Scholar 

  115. 115.

    Lafrenière, M. J., Blais, J. M., Sharp, M. J. & Schindler, D. W. Organochlorine pesticide and polychlorinated biphenyl concentrations in snow, snowmelt, and runoff at Bow Lake, Alberta. Environ. Sci. Technol. 40, 4909–4915 (2006).

    Article  CAS  Google Scholar 

  116. 116.

    Elliott, J. E. et al. Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers? Environ. Sci. Technol. 46, 9681–9689 (2012).

    CAS  Article  Google Scholar 

  117. 117.

    Walters, D. M. et al. Trophic magnification of organic chemicals: a global synthesis. Environ. Sci. Technol. 50, 4650–4658 (2016).

    CAS  Article  Google Scholar 

  118. 118.

    Miner, K. R., Wayant, N. & Ward, H. Preventing chemical release in hurricanes. Science 362, 166 (2018).

    CAS  Article  Google Scholar 

  119. 119.

    Quadroni, S. & Bettinetti, R. Health risk assessment for the consumption of fresh and preserved fish (Alosa agone) from Lago di Como (northern Italy). Environ. Res. 156, 571–578 (2017).

    CAS  Article  Google Scholar 

  120. 120.

    Mangano, M. C., Sarà, G. & Corsolini, S. Monitoring of persistent organic pollutants in the polar regions: knowledge gaps & gluts through evidence mapping. Chemosphere 172, 37–45 (2017).

    CAS  Article  Google Scholar 

  121. 121.

    Villa, S., Vighi, M., Maggi, V., Finizio, A. & Bolzacchini, E. Historical trends of organochlorine pesticides in an alpine glacier. J. Atmos. Chem. 46, 295–311 (2003).

    CAS  Article  Google Scholar 

  122. 122.

    Garmash, O. et al. Deposition history of polychlorinated biphenyls to the Lomonosovfonna glacier, Svalbard: a 209 congener analysis. Environ. Sci. Technol. 47, 12064–12072 (2013).

    CAS  Article  Google Scholar 

  123. 123.

    Bizzotto, E. C., Villa, S., Vaj, C. & Vighi, M. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt. Chemosphere 74, 924–930 (2009).

    CAS  Article  Google Scholar 

  124. 124.

    Villa, S., Negrelli, C., Finizio, A., Flora, O. & Vighi, M. Organochlorine compounds in ice melt water from Italian alpine rivers. Ecotoxicol. Environ. Saf. 63, 84–90 (2006).

    CAS  Article  Google Scholar 

  125. 125.

    Miner, K. R. et al. A screening-level approach to quantifying risk from glacial release of organochlorine pollutants in the Alaskan Arctic. J. Expo. Sci. Environ. Epidemiol. 29, 293–301 (2018). Develops the first human risk assessment of glacially stored pollutants in the Arctic.

    Article  CAS  Google Scholar 

  126. 126.

    Czub, G. & McLachlan, M. S. A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ. Toxicol. Chem. 23, 2356–2366 (2004).

    CAS  Article  Google Scholar 

  127. 127.

    Wang, X., Gong, P., Wang, C., Ren, J. & Yao, T. A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau. Sci. Total Environ. 573, 139–154 (2016).

    CAS  Article  Google Scholar 

  128. 128.

    Desforges, J. P. et al. Predicting global killer whale population collapse from PCB pollution. Science 361, 1373–1376 (2018).

    CAS  Article  Google Scholar 

  129. 129.

    Macdonald, R. W. et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 254, 93–234 (2000).

    CAS  Article  Google Scholar 

  130. 130.

    Pavlova, P. A. et al. Polychlorinated biphenyls in a temperate alpine glacier: 1. Effect of percolating meltwater on their distribution in glacier ice. Environ. Sci. Technol. 49, 14085–14091 (2015).

    CAS  Article  Google Scholar 

  131. 131.

    Wania, F., Westgate, J. N., Technol, E. S. & Asap, A. On the mechanism of mountain cold-trapping of organic chemicals. Environ. Sci. Technol. 42, 9092–9098 (2008).

    CAS  Article  Google Scholar 

  132. 132.

    Strand, P. & Cooke, A. Environmental Radioactivity in the Arctic (Scientific Committee of the Environmental Radioactivity in the Arctic, 1995).

  133. 133.

    Wright, S. M. et al. Spatial variation in the vulnerability of Norwegian Arctic counties to radiocaesium deposition. Sci. Total Environ. 202, 173–184 (1997).

    CAS  Article  Google Scholar 

  134. 134.

    Mitchell, P. I., León Vintró, L., Dahlgaard, H., Gascó, C. & Sánchez-Cabeza, J. A. Perturbation in the 240Pu/239Pu global fallout ratio in local sediments following the nuclear accidents at Thule (Greenland) and Palomares (Spain). Sci. Total Environ. 202, 147–153 (1997).

    CAS  Article  Google Scholar 

  135. 135.

    Khalturin, V. I., Rautian, T. G., Richards, P. G. & Leith, W. S. A review of nuclear testing by the Soviet Union at Novaya Zemlya, 1955–1990. Sci. Glob. Secur. 13, 1–42 (2005). Reviews the Novaya Zemlya nuclear testing site history, nuclear releases and posits environmental distribution.

    Article  Google Scholar 

  136. 136.

    Travkina, A. V. et al. Monitoring the environmental contamination of Kara Sea and shallow bays of Novaya Zemlya. J. Radioanal. Nucl. Chem. 311, 1673–1680 (2017).

    CAS  Article  Google Scholar 

  137. 137.

    Skorve, J. The environment of the nuclear test sites on Novaya Zemlya. Sci. Total Environ. 202, 167–172 (1997).

    CAS  Article  Google Scholar 

  138. 138.

    Sarkisov, A. A. The question of clean-up of radioactive contamination in the Arctic region. Her. Russ. Acad. Sci. 89, 7–22 (2019).

    Article  Google Scholar 

  139. 139.

    Pogrebov, V. B., Fokin, S. I., Galtsova, V. V. & Ivanov, G. I. Benthic communities as influenced by nuclear testing and radioactive waste disposal off Novaya Zemlya in the Russian Arctic. Mar. Pollut. Bull. 35, 333–339 (1997).

    CAS  Article  Google Scholar 

  140. 140.

    Miroshnikov, A. Y. et al. Radioecological investigations on the northern Novaya Zemlya Archipelago. Oceanology 57, 204–214 (2017).

    Article  Google Scholar 

  141. 141.

    Salbu, B. et al. Radioactive contamination from dumped nuclear waste in the Kara Sea—results from the joint Russian-Norwegian expeditions in 1992-1994. Sci. Total Environ. 202, 185–198 (1997).

    CAS  Article  Google Scholar 

  142. 142.

    Oughton, D. H., Børretzen, P., Salbu, B. & Tronstad, E. Mobilisation of 137Cs and 90Sr from sediments: potential sources to Arctic waters. Sci. Total Environ. 202, 155–165 (1997).

    CAS  Article  Google Scholar 

  143. 143.

    Faria, S. H., Weikusat, I. & Azuma, N. The microstructure of polar ice. Part I: highlights from ice core research. J. Struct. Geol. 61, 2–20 (2014).

    Article  Google Scholar 

  144. 144.

    Karlsson, N. B. et al. Ice-penetrating radar survey of the subsurface debris field at Camp Century, Greenland. Cold Reg. Sci. Technol. 165, 102788 (2019). The most recent ice-penetrating radar survey of Camp Century, Greenland, characterizing the location and concentration of wastes.

    Article  Google Scholar 

  145. 145.

    Vandecrux, B., Colgan, W. T., Solgaard, A., Steffensen, J. P. & Karlsson, N. B. Firn evolution at Camp Century, Greenland: 1966-2100. Front. Earth Sci. 9, 578978 (2021).

    Article  Google Scholar 

  146. 146.

    Vila, E., Hornero-Méndez, D., Azziz, G., Lareo, C. & Saravia, V. Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol. Rep. 21, e00306 (2019).

    Article  Google Scholar 

  147. 147.

    Chaudhary, D. K., Kim, D. U., Kim, D. & Kim, J. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci. Rep. 9, 4134 (2019).

    Article  CAS  Google Scholar 

  148. 148.

    de Gouw, J. A. et al. Daily satellite observations of methane from oil and gas production regions in the United States. Sci. Rep. 10, 1379 (2020).

    Article  CAS  Google Scholar 

  149. 149.

    Girardot, F. et al. Bacterial diversity on an abandoned, industrial wasteland contaminated by polychlorinated biphenyls, dioxins, furans and trace metals. Sci. Total Environ. 748, 141242 (2020).

    CAS  Article  Google Scholar 

  150. 150.

    Price, P. B. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol. Ecol. 59, 217–231 (2007).

    CAS  Article  Google Scholar 

  151. 151.

    Schütte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019).

    Article  CAS  Google Scholar 

  152. 152.

    Jensen, P. E., Hennessy, T. W. & Kallenborn, R. Water, sanitation, pollution, and health in the Arctic. Environ. Sci. Pollut. Res. 25, 32827–32830 (2018).

    Article  Google Scholar 

  153. 153.

    Ewing, S. A. et al. Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost. Geophys. Res. Lett. 42, 10730–10738 (2015).

    CAS  Article  Google Scholar 

  154. 154.

    Elder, C. D. et al. Seasonal sources of whole-lake CH4 and CO2 emissions from interior Alaskan thermokarst lakes. J. Geophys. Res. Biogeosci. 124, 1209–1229 (2019).

    CAS  Article  Google Scholar 

  155. 155.

    Jansen, E. et al. Past perspectives on the present era of abrupt Arctic climate change. Nat. Clim. Change 10, 714–721 (2020).

    Article  Google Scholar 

  156. 156.

    Nellier, Y.-M. et al. Mass budget in two high altitude lakes reveals their role as atmospheric PCB sinks. Sci. Total Environ. 511, 203–213 (2015).

    CAS  Article  Google Scholar 

  157. 157.

    Garnett, J. et al. Mechanistic insight into the uptake and fate of persistent organic pollutants in sea ice. Environ. Sci. Technol. 53, 6757–6764 (2019).

    CAS  Article  Google Scholar 

  158. 158.

    Kortenkamp, A. & Faust, M. Regulate to reduce chemical mixture risk. Science 361, 224–226 (2018).

    CAS  Article  Google Scholar 

  159. 159.

    Kirchgeorg, T. et al. Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the eastern Alps. Environ. Pollut. 218, 804–812 (2016).

    CAS  Article  Google Scholar 

  160. 160.

    Weil, T. et al. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 5, 32 (2017).

    Article  Google Scholar 

  161. 161.

    Li, J. et al. Evidence for persistent organic pollutants released from melting glacier in the central Tibetan Plateau, China. Environ. Pollut. 220, 178–185 (2017).

    CAS  Article  Google Scholar 

  162. 162.

    Walvoord, M. A., Voss, C. I., Ebel, B. A. & Minsley, B. J. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environ. Res. Lett. 14, 015003 (2019).

    CAS  Article  Google Scholar 

  163. 163.

    Mogrovejo, D. C. et al. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable Arctic bacteria. Front. Microbiol. 11, 570 (2020).

    Article  Google Scholar 

  164. 164.

    Friedman, C. L. & Selin, N. E. Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources. Environ. Sci. Technol. 46, 9501–9510 (2012).

    CAS  Article  Google Scholar 

  165. 165.

    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article  Google Scholar 

  166. 166.

    Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).

    CAS  Article  Google Scholar 

  167. 167.

    MacInnis, J. J. et al. Fate and transport of perfluoroalkyl substances from snowpacks into a lake in the high Arctic of Canada. Environ. Sci. Technol. 53, 10753–10762 (2019).

    CAS  Article  Google Scholar 

  168. 168.

    Yeung, L. W. Y. et al. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean. Environ. Sci. Technol. 51, 6735–6744 (2017).

    CAS  Article  Google Scholar 

  169. 169.

    Colatriano, D. et al. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun. Biol. 1, 90 (2018).

    Article  Google Scholar 

  170. 170.

    Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).

    CAS  Article  Google Scholar 

  171. 171.

    Hartmann, M. et al. Variation of ice nucleating particles in the European Arctic over the last centuries. Geophys. Res. Lett. https://doi.org/10.1029/2019GL082311 (2019).

  172. 172.

    Murray, B. J., Carslaw, K. S. & Field, P. R. Opinion: cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 21, 665–679 (2021).

    CAS  Article  Google Scholar 

  173. 173.

    Joyce, R. E. et al. Biological ice-nucleating particles deposited year-round in subtropical precipitation. Appl. Environ. Microbiol. 85, e01567-19 (2019).

    Article  Google Scholar 

  174. 174.

    Yumashev, D., van Hussen, K., Gille, J. & Whiteman, G. Towards a balanced view of Arctic shipping: estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Clim. Change 143, 143–155 (2017).

    CAS  Article  Google Scholar 

  175. 175.

    Ramage, J. et al. Population living on permafrost in the Arctic. Popul. Environ. https://doi.org/10.1007/s11111-020-00370-6 (2021).

  176. 176.

    Bartsch, A., Pointner, G., Ingeman-Nielsen, T. & Lu, W. Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2. Remote Sens. 12, 2368 (2020).

    Article  Google Scholar 

  177. 177.

    Dewailly, E. Canadian Inuit and the Arctic dilemma. Oceanography 19, 88–89 (2006).

    Article  Google Scholar 

  178. 178.

    Plaza, C. et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631 (2019).

    CAS  Article  Google Scholar 

  179. 179.

    Kashuba, E. et al. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb. Ecol. Health Dis. https://doi.org/10.1080/16512235.2017.1345574 (2017).

  180. 180.

    Dcosta, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    CAS  Article  Google Scholar 

  181. 181.

    Perron, G. G. et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10, e0069533 (2015).

    Article  CAS  Google Scholar 

  182. 182.

    Gilichinsky, D. et al. in Psychrophiles: From Biodiversity to Biotechnology (eds Margesin, R. et al.) 83–102 (Springer-Verlag, 2008).

  183. 183.

    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    CAS  Article  Google Scholar 

  184. 184.

    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    CAS  Article  Google Scholar 

  185. 185.

    Taubenberger, J. K. et al. Reconstruction of the 1918 influenza virus: unexpected rewards from the past. mBio 3, e00201–12 (2012).

    Article  Google Scholar 

  186. 186.

    Jordan, D., Tumpey, T. & Jester, B. The Deadliest Flu: The Complete Story of the Discovery and Reconstruction of the 1918 Pandemic Virus (US Center for Disease Control, 2019).

  187. 187.

    Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    CAS  Article  Google Scholar 

  188. 188.

    Revich, B., Tokarevich, N. & Parkinson, A. J. Climate change and zoonotic infections in the Russian Arctic. Int. J. Circumpolar Health 71, 18792 (2012).

    Article  Google Scholar 

  189. 189.

    Waits, A., Emelyanova, A., Oksanen, A., Abass, K. & Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713 (2018).

    Article  Google Scholar 

  190. 190.

    Hueffer, K., Drown, D., Romanovsky, V. & Hennessy, T. Factors contributing to anthrax outbreaks in the circumpolar north. Ecohealth 17, 174–180 (2020).

    Article  Google Scholar 

  191. 191.

    Springer, Y. P. et al. Novel Orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 64, 1737–1741 (2017).

    Article  Google Scholar 

  192. 192.

    Mackay, D. Multimedia Environmental Models (CRC Press, 2001).

  193. 193.

    Mackay, D., Celsie, A. K. D., Powell, D. E. & Parnis, J. M. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Environ. Sci. Process. Impacts 20, 72–85 (2018).

    CAS  Article  Google Scholar 

  194. 194.

    Vizcaino, E., Grimalt, J. O., Fernandez-Somoano, A. & Tardon, A. Transport of persistent organic pollutants across the human placenta. Environ. Int. 65, 107–115 (2014).

    CAS  Article  Google Scholar 

  195. 195.

    Costa, O. et al. First-trimester maternal concentrations of polyfluoroalkyl substances and fetal growth throughout pregnancy. Environ. Int. https://doi.org/10.1016/j.envint.2019.05.024 (2019).

  196. 196.

    Adetona, O. et al. Concentrations of select persistent organic pollutants across pregnancy trimesters in maternal and in cord serum in Trujillo, Peru. Chemosphere 91, 1426–1433 (2013).

    CAS  Article  Google Scholar 

  197. 197.

    Toxicological Profile for Plutonium (Agency for Toxic Substances and Disease Registry, 2010); https://www.atsdr.cdc.gov/toxprofiles/tp143.pdf

  198. 198.

    Toxicological Profile for Cesium (Agency for Toxic Substances and Disease Registry, 2004); https://www.atsdr.cdc.gov/toxprofiles/tp157.pdf

  199. 199.

    Serikova, S. et al. High carbon emissions from thermokarst lakes of western Siberia. Nat. Commun. 10, 1552 (2019).

    CAS  Article  Google Scholar 

  200. 200.

    Swingedouw, D. et al. Early warning from space for a few key tipping points in physical, biological, and social-ecological systems. Surv. Geophys. https://doi.org/10.1007/s10712-020-09604-6 (2020).

  201. 201.

    Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat. Commun. 10, 1329 (2019).

    Article  CAS  Google Scholar 

  202. 202.

    Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. https://doi.org/10.1002/ppp.2057 (2020).

  203. 203.

    Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).

    Article  Google Scholar 

  204. 204.

    Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).

    Article  Google Scholar 

  205. 205.

    Donald, D. B. et al. Delayed deposition of organochlorine pesticides at a temperate glacier. Environ. Sci. Technol. 33, 1794–1798 (1999).

    CAS  Article  Google Scholar 

  206. 206.

    Hermanson, M. H. et al. Current-use and legacy pesticide history in the Austfonna ice cap, Svalbard, Norway. Environ. Sci. Technol. 39, 8163–8169 (2005).

    CAS  Article  Google Scholar 

  207. 207.

    Salvadó, J. A., Sobek, A., Carrizo, D. & Gustafsson, Ö. Observation-based assessment of PBDE loads in Arctic ocean waters. Environ. Sci. Technol. 50, 2236–2245 (2016).

    Article  CAS  Google Scholar 

  208. 208.

    Vecchiato, M. et al. The great acceleration of fragrances and PAHs archived in an ice core from Elbrus, Caucasus. Sci. Rep. 10, 10661 (2020).

    CAS  Article  Google Scholar 

  209. 209.

    Miteva, V., Teacher, C., Sowers, T. & Brenchley, J. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This work is a part of both the NASA-ESA Arctic Methane and Permafrost Challenge (AMPAC) and the NASA Arctic-Boreal Vulnerability Experiment (ABoVE). Research on microbial liberation from frozen Arctic environments is supported by UKRI grant NE/S001034/1 to A.E.

Author information

Affiliations

Authors

Contributions

All of the authors contributed to writing and revising this paper.

Corresponding author

Correspondence to Kimberley R. Miner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Ianina Altshuler, Lauren Thompson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miner, K.R., D’Andrilli, J., Mackelprang, R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 11, 809–819 (2021). https://doi.org/10.1038/s41558-021-01162-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing