Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Permafrost carbon emissions in a changing Arctic

Abstract

Arctic permafrost stores nearly 1,700 billion metric tons of frozen and thawing carbon. Anthropogenic warming threatens to release an unknown quantity of this carbon to the atmosphere, influencing the climate in processes collectively known as the permafrost carbon feedback. In this Review, we discuss advances in tracking permafrost carbon dynamics, including mechanisms of abrupt thaw, instrumental observations of carbon release and model predictions of the permafrost carbon feedback. Abrupt thaw and thermokarst could emit a substantial amount of carbon to the atmosphere rapidly (days to years), mobilizing the deep legacy carbon sequestered in Yedoma. Carbon dioxide emissions are proportionally larger than other greenhouse gas emissions in the Arctic, but expansion of anoxic conditions within thawed permafrost and soils stands to increase the proportion of future methane emissions. Increasingly frequent wildfires in the Arctic will also lead to a notable but unpredictable carbon flux. More detailed monitoring though in situ, airborne and satellite observations will provide a deeper understanding of the Arctic’s future role as a carbon source or sink, and the subsequent impact on the Earth system.

Key points

  • Tundra fire and abrupt thaw events are increasingly driving the release of permafrost carbon into the atmosphere.

  • Observational tools improve carbon flux estimates across scales, but scaling remains a major challenge.

  • Satellite systems scheduled to come online by 2025 will provide high-frequency data and enable better monitoring of permafrost carbon emissions.

  • Earth system models must include permafrost dynamics to enable accurate permafrost carbon feedback projections.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Permafrost location and temperature in the Arctic.
Fig. 2: Vulnerability of carbon stocks to permafrost thaw.
Fig. 3: Carbon flux dynamics in permafrost landscapes.
Fig. 4: Simulated cumulative changes in permafrost area and storage capacity.
Fig. 5: Projected change in Arctic net carbon balance to 2300.

Similar content being viewed by others

References

  1. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Google Scholar 

  2. Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).

    Google Scholar 

  3. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Google Scholar 

  4. Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Google Scholar 

  5. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  6. Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

    Google Scholar 

  7. McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Google Scholar 

  8. Heffernan, L., Estop-Aragonés, C., Knorr, K. H., Talbot, J. & Olefeldt, D. Long-term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. J. Geophys. Res. Biogeosci. 125, e2019JG005501 (2020).

    Google Scholar 

  9. Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 7, 340–344 (2017).

    Google Scholar 

  10. Bartsch, A. et al. Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra? Biogeosciences 13, 5453–5470 (2016).

    Google Scholar 

  11. Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).

    Google Scholar 

  12. Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).

    Google Scholar 

  13. Natali, S. M. et al. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl. Acad. Sci. USA 118, e2100163118 (2021).

    Google Scholar 

  14. Zona, D. et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45 (2016).

    Google Scholar 

  15. Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).

    Google Scholar 

  16. Heslop, J. K. K. et al. A synthesis of methane dynamics in thermokarst lake environments. Earth Sci. Rev. 210, 103365 (2020).

    Google Scholar 

  17. Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).

    Google Scholar 

  18. Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).

    Google Scholar 

  19. Lara, M. J. et al. Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics. Nat. Commun. 11, 4925 (2020).

    Google Scholar 

  20. Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Google Scholar 

  21. Rey, D. M. et al. Wildfire-initiated talik development exceeds current thaw projections: observations and models from Alaska’s continuous permafrost zone. Geophys. Res. Lett. 47, e2020GL087565 (2020).

    Google Scholar 

  22. Kim, J. S., Kug, J. S., Jeong, S. J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6, eaax3308 (2020).

    Google Scholar 

  23. Vonk, J. E., Tank, S. E. & Walvoord, M. A. Integrating hydrology and biogeochemistry across frozen landscapes. Nat. Commun. 10, 5377 (2019).

    Google Scholar 

  24. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Google Scholar 

  25. Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    Google Scholar 

  26. Schwab, M. S. et al. An abrupt aging of dissolved organic carbon in large Arctic rivers. Geophys. Res. Lett. 47, e2020GL088823 (2020).

    Google Scholar 

  27. Walter Anthony, K. M. et al. Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett. 16, 35010 (2021).

    Google Scholar 

  28. Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).

    Google Scholar 

  29. Turner, M. G. et al. Climate change, ecosystems and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).

    Google Scholar 

  30. Fountain, A. G. et al. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62, 405–415 (2012).

    Google Scholar 

  31. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Google Scholar 

  32. Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2012).

    Google Scholar 

  33. Sayedi, S. S. et al. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environ. Res. Lett. 15, 124075 (2020).

    Google Scholar 

  34. Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00240-1 (2022).

    Article  Google Scholar 

  35. Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).

    Google Scholar 

  36. Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).

    Google Scholar 

  37. Elder, C. D. et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat. Clim. Chang. 8, 166–171 (2018).

    Google Scholar 

  38. Martens, J. et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the last deglaciation. Glob. Biogeochem. Cycles 33, 2–14 (2019).

    Google Scholar 

  39. Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).

    Google Scholar 

  40. Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–24 (2019).

    Google Scholar 

  41. Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    Google Scholar 

  42. Mishra, U. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7, 5236–5260 (2021).

    Google Scholar 

  43. Treat, C. C. et al. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Global Chang. Biol. 24, 5188–5204 (2018).

    Google Scholar 

  44. Siewert, M. B., Lantuit, H., Richter, A. & Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 35, e2020GB006659 (2021).

    Google Scholar 

  45. Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Chang. 10, 1143–1148 (2020).

    Google Scholar 

  46. Hope, C. & Schaefer, K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nat. Clim. Chang. 6, 56–59 (2016).

    Google Scholar 

  47. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Google Scholar 

  48. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar 

  49. Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

    Google Scholar 

  50. Tanski, G. et al. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 46, 11244–11252 (2019).

    Google Scholar 

  51. Liljedahl, A. K., Gädeke, A., O’Neel, S., Gatesman, T. A. & Douglas, T. A. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).

    Google Scholar 

  52. Yumashev, D. et al. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10, 1900 (2019).

    Google Scholar 

  53. Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Google Scholar 

  54. Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Chang. 5, 67–70 (2015).

    Google Scholar 

  55. Anthony, K. W. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Google Scholar 

  56. Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 201916387 (2020).

    Google Scholar 

  57. Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L. & Parmentier, F. J. W. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci. Rep. 9, 1146 (2019).

    Google Scholar 

  58. United Nations Framework Convention on Climate Change. Total aggregate greenhouse gas emissions of individual nations, annex 1. World Resources Institute https://www.wri.org/resources/data-sets/climate-watch-cait-unfccc-annex-i-ghg-emissions-data (2008).

  59. Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).

    Google Scholar 

  60. Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).

    Google Scholar 

  61. Jones, B. M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00238-9 (2022).

  62. Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).

    Google Scholar 

  63. Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L. & Zipper, S. C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 13, 084017 (2018).

    Google Scholar 

  64. Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).

    Google Scholar 

  65. Jeong, S. J. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 4, eaao1167 (2018).

    Google Scholar 

  66. Disher, B. S., Connon, R. F., Haynes, K. M., Hopkinson, C. & Quinton, W. L. The hydrology of treed wetlands in thawing discontinuous permafrost regions. Ecohydrology 14, e2296 (2021).

    Google Scholar 

  67. Parazoo, N. C. et al. Detecting regional patterns of changing CO2 flux in Alaska. Proc. Natl Acad. Sci. USA 113, 7733–7738 (2016).

    Google Scholar 

  68. Silva, J. L. A., Souza, A. F., Caliman, A., Voigt, E. L. & Lichston, J. E. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecol. Evol. 8, 4–12 (2018).

    Google Scholar 

  69. Ward, C. P. & Cory, R. M. Chemical composition of dissolved organic matter draining permafrost soils. Geochim. Cosmochim. Acta 167, 63–79 (2015).

    Google Scholar 

  70. Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).

    Google Scholar 

  71. Stein, L. Y. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol. 28, 500–511 (2020).

    Google Scholar 

  72. Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).

    Google Scholar 

  73. Estop-Aragonés, C. et al. Assessing the potential for mobilization of old soil carbon after permafrost thaw: a synthesis of 14C measurements from the northern permafrost region. Glob. Biogeochem. Cycles 34, e2020GB006672 (2020).

    Google Scholar 

  74. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Google Scholar 

  75. Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Google Scholar 

  76. Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Chang. 6, 595–600 (2016).

    Google Scholar 

  77. Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).

    Google Scholar 

  78. Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

    Google Scholar 

  79. Kwon, M. J. et al. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob. Chang. Biol. 23, 2396–2412 (2017).

    Google Scholar 

  80. Jin, X.-Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Chang. Res. 12, 29–47 (2020).

    Google Scholar 

  81. Song, X. et al. Soil moisture as a key factor in carbon release from thawing permafrost in a boreal forest. Geoderma 357, 113975 (2020).

    Google Scholar 

  82. Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Chang. 10, 685–690 (2020).

    Google Scholar 

  83. Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, K. C. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).

    Google Scholar 

  84. Thompson, R. L. et al. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).

    Google Scholar 

  85. Oh, Y. et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Chang. 10, 317–321 (2020).

    Google Scholar 

  86. Street, L. E. et al. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Glob. Chang. Biol. 26, 4559–4571 (2020).

    Google Scholar 

  87. Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).

    Google Scholar 

  88. Hu, Y., Fernandez-Anez, N., Smith, T. E. L. & Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27, 293–312 (2018).

    Google Scholar 

  89. Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).

    Google Scholar 

  90. Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).

    Google Scholar 

  91. Holloway, J. E. et al. Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects. Permafr. Periglac. Process. 31, 371–382 (2020).

    Google Scholar 

  92. McCarty, J. L., Smith, T. E. L. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).

    Google Scholar 

  93. Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).

    Google Scholar 

  94. Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).

    Google Scholar 

  95. MacDougall, A. H. & Knutti, R. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13, 2123–2136 (2016).

    Google Scholar 

  96. Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Chang. 7, 507–511 (2017).

    Google Scholar 

  97. Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region–a model intercomparison. Cryosphere 14, 445–459 (2020).

    Google Scholar 

  98. Bartsch, A., Pointner, G., Ingeman-Nielsen, T. & Lu, W. Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2. Remote Sens. 12, 2368 (2020).

    Google Scholar 

  99. Swingedouw, D. et al. Early warning from space for a few key tipping points in physical, biological, and social-ecological systems. Surv. Geophys. 41, 1237–1284 (2020).

    Google Scholar 

  100. Elder, C. D. et al. Airborne mapping reveals emergent power law of Arctic methane emissions. Geophys. Res. Lett. 47, e2019GL085707 (2020).

    Google Scholar 

  101. Byrne, B. et al. Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2 measurements. J. Geophys. Res. Atmos. 125, e2019JD032029 (2020).

    Google Scholar 

  102. Karlson, M. et al. Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models. Remote Sens. Environ. 231, 111252 (2019).

    Google Scholar 

  103. Cusworth, D. H. et al. Synthesis of methane observations across scales: strategies for deploying a multitiered observing network. Geophys. Res. Lett. 47, e2020GL087869 (2020).

    Google Scholar 

  104. Bale, N. J. et al. Fatty acid and hopanoid adaption to cold in the methanotroph methylovulum psychrotolerans. Front. Microbiol. 10, 589 (2019).

    Google Scholar 

  105. Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).

    Google Scholar 

  106. Siliakus, M. F., van der Oost, J. & Kengen, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670 (2017).

    Google Scholar 

  107. Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).

    Google Scholar 

  108. Hueffer, K., Drown, D., Romanovsky, V. & Hennessy, T. Factors contributing to anthrax outbreaks in the circumpolar north. Ecohealth 17, 174–180 (2020).

    Google Scholar 

  109. Miner, K. R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 11, 809–819 (2021).

    Google Scholar 

  110. Perron, G. G. et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10, e0069533 (2015).

    Google Scholar 

  111. MacKelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    Google Scholar 

  112. Burkert, A., Douglas, T. A., Waldrop, M. P. & Mackelprang, R. Changes in the active, dead, and dormant microbial community structure across a pleistocene permafrost chronosequence. Appl. Environ. Microbiol. 85, e02646-18 (2019).

    Google Scholar 

  113. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    Google Scholar 

  114. Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    Google Scholar 

  115. Schadel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6, 950–953 (2016).

    Google Scholar 

  116. Lee, H. et al. A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob. Chang. Biol. 17, 1379–1393 (2011).

    Google Scholar 

  117. Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P. & Harden, J. W. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost. J. Geophys. Res. Biogeosci. 119, 1576–1595 (2014).

    Google Scholar 

  118. Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska. Ecosystems 20, 960–974 (2017).

    Google Scholar 

  119. Karlsson, J. et al. Carbon emission from Western Siberian inland waters. Nat. Commun. 12, 825 (2021).

    Google Scholar 

  120. Schuur, E. A. G. et al. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements. J. Geophys. Res. Biogeosci. 126, e2020JG006044 (2021).

    Google Scholar 

  121. Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).

    Google Scholar 

  122. Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00233-0 (2022).

    Article  Google Scholar 

  123. Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384 (2016).

    Google Scholar 

  124. Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Google Scholar 

  125. Schimel, D. & Schneider, F. D. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).

    Google Scholar 

  126. Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).

    Google Scholar 

  127. Jammet, M. et al. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences 14, 5189–5216 (2017).

    Google Scholar 

  128. Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J. & Sachs, T. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7, 5828 (2017).

    Google Scholar 

  129. Sayres, D. S. et al. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft. Atmos. Chem. Phys. 17, 8619–8633 (2017).

    Google Scholar 

  130. Ueyama, M. et al. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J. Geophys. Res. Biogeosci. 118, 1266–1281 (2013).

    Google Scholar 

  131. Davidson, S. J. et al. Upscaling CH4 fluxes using high-resolution imagery in Arctic tundra ecosystems. Remote Sens. 9, 1227 (2017).

    Google Scholar 

  132. Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).

    Google Scholar 

  133. Chang, R. Y. W. et al. Methane emissions from Alaska in 2012 from CARVE airborne observations. Proc. Natl Acad. Sci. USA 111, 16694–16699 (2014).

    Google Scholar 

  134. Saeki, T. et al. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements. J. Geophys. Res. Atmos. 118, 1100–1122 (2013).

    Google Scholar 

  135. Kim, J. et al. Impact of Siberian observations on the optimization of surface CO2 flux. Atmos. Chem. Phys. 17, 2881–2899 (2017).

    Google Scholar 

  136. O’Shea, S. J. et al. Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmos. Chem. Phys. 14, 13159–13174 (2014).

    Google Scholar 

  137. Gottwald, M. & Bovensmann, H. SCIAMACHY — Exploring the Changing Earth’s Atmosphere (Springer, 2011).

  138. Siewert, M. B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment. Biogeosciences 15, 1663–1682 (2018).

    Google Scholar 

  139. Arndt, K. A. et al. Arctic greening associated with lengthening growing seasons in Northern Alaska. Environ. Res. Lett. 14, 125018 (2019).

    Google Scholar 

  140. Widhalm, B., Bartsch, A. & Heim, B. A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data. Int. J. Remote Sens. 36, 5537–5556 (2015).

    Google Scholar 

  141. Varon, D. J. et al. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021).

    Google Scholar 

  142. Bartsch, A., Hofler, A., Kroisleitner, C. & Trofaier, A. M. Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges. Remote Sens. 8, 979 (2016).

    Google Scholar 

  143. Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 9 (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  144. Kivimäki, E. et al. Evaluation and analysis of the seasonal cycle and variability of the trend from GOSAT methane retrievals. Remote Sens. 11, 882 (2019).

    Google Scholar 

  145. Lindqvist, H. et al. Does GOSAT capture the true seasonal cycle of carbon dioxide? Atmos. Chem. Phys. 15, 13023–13040 (2015).

    Google Scholar 

  146. Chadburn, S. et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14, 5143–5169 (2017).

    Google Scholar 

  147. Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    Google Scholar 

  148. Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019).

    Google Scholar 

  149. Westermann, S. et al. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia. Cryosphere 11, 1441–1463 (2017).

    Google Scholar 

  150. Houweling, S. et al. An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res. 120, 5253–5266 (2015).

    Google Scholar 

  151. Houweling, S. et al. Global inverse modeling of CH4 sources and sinks: an overview of methods. Atmos. Chem. Phys. 17, 235–256 (2017).

    Google Scholar 

  152. Tsuruta, A. et al. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 10, 1261–1289 (2017).

    Google Scholar 

  153. Virkkala, A. M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).

    Google Scholar 

  154. Hakkarainen, J., Ialongo, I., Maksyutov, S. & Crisp, D. Analysis of four years of global XCO2 anomalies as seen by Orbiting Carbon Observatory-2. Remote Sens. 11, 850 (2019).

    Google Scholar 

  155. Fisher, J. B. et al. Missing pieces to modeling the Arctic-Boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).

    Google Scholar 

  156. McGuire, A. D. et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012).

    Google Scholar 

  157. Lenton, T. M. & Williams, H. T. P. On the origin of planetary-scale tipping points. Trends Ecol. Evol. 28, 380–382 (2013).

    Google Scholar 

  158. Lenton, T. M. Arctic climate tipping points. Ambio 41, 10–22 (2012).

    Google Scholar 

  159. Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).

    Google Scholar 

  160. Fleisher, A. J., Long, D. A., Liu, Q., Gameson, L. & Hodges, J. T. Optical measurement of radiocarbon below unity fraction modern by linear absorption spectroscopy. J. Phys. Chem. Lett. 8, 4550–4556 (2017).

    Google Scholar 

  161. Genoud, G. et al. Laser spectroscopy for monitoring of radiocarbon in atmospheric samples. Anal. Chem. 91, 12315–12320 (2019).

    Google Scholar 

  162. Levin, I. et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B Chem. Phys. Meteorol. 62, 26–46 (2010).

    Google Scholar 

  163. Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases — carbon dioxide, methane, and nitrous oxide. Glob. Chang. Biol. 23, 3121–3138 (2017).

    Google Scholar 

  164. Mu, C. C. et al. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophys. Res. Lett. 44, 8945–8952 (2017).

    Google Scholar 

  165. Krogh, S. A., Pomeroy, J. W. & Marsh, P. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model. J. Hydrol. 550, 685–703 (2017).

    Google Scholar 

  166. Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).

    Google Scholar 

  167. Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions — a significant component of annual emissions across northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).

    Google Scholar 

  168. Kelley, J. J., Weaver, D. F. & Smith, B. P. The variation of carbon dioxide under the snow in the Arctic. Ecology 49, 358–361 (1968).

    Google Scholar 

  169. Du, J. et al. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ. 213, 1–17 (2018).

    Google Scholar 

  170. Webb, E. E. et al. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosci. 121, 249–265 (2016).

    Google Scholar 

  171. Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E. & Schuur, E. A. G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 11, 040201 (2016).

    Google Scholar 

  172. Kleinen, T. & Brovkin, V. Pathway-dependent fate of permafrost region carbon. Environ. Res. Lett. 13, 094001 (2018).

    Google Scholar 

  173. Anthony, K. M. W. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Google Scholar 

  174. Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J. & Krinner, G. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9, 683–686 (2016).

    Google Scholar 

  175. Tesi, T. et al. Massive remobilization of permafrost carbon during post-glacial warming. Nat. Commun. 7, 13653 (2016).

    Google Scholar 

  176. McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).

    Google Scholar 

  177. Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2016).

    Google Scholar 

  178. Kuze, A. et al. Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech. 9, 2445–2461 (2016).

    Google Scholar 

  179. Eldering, A. et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358, eaam5745 (2017).

    Google Scholar 

  180. Yang, D. et al. First global carbon dioxide maps produced from TanSat measurements. Adv. Atmos. Sci. 35, 621–623 (2018).

    Google Scholar 

  181. Glumb, R., Davis, G. & Lietzke, C. in IEEE International Geoscience and Remote Sensing Symposium 1238–1240 (IEEE, 2014).

  182. Lorente, A. et al. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 14, 665–684 (2021).

    Google Scholar 

  183. Ehret, G. et al. MERLIN: a French–German space lidar mission dedicated to atmospheric methane. Remote Sens. 9, 1052 (2017).

    Google Scholar 

  184. Bousquet, P. et al. Error budget of the MEthane Remote LIdar missioN and its impact on the uncertainties of the global methane budget. J. Geophys. Res. Atmos. 123, 11,766–11,785 (2018).

    Google Scholar 

  185. Bezy, J.-L. et al. in IEEE International Geoscience and Remote Sensing Symposium 8400–8403 (IEEE, 2019).

  186. Ingmann, P. et al. Requirements for the GMES atmosphere service and ESA’s implementation concept: Sentinels-4/-5 and -5p. Remote Sens. Environ. 120, 58–69 (2012).

    Google Scholar 

  187. Nassar, R. et al. The atmospheric imaging mission for northern regions: AIM-North. Can. J. Remote Sens. 45, 423–442 (2019).

    Google Scholar 

  188. Polonsky, I. N., O’Brien, D. M., Kumer, J. B., O’Dell, C. W. & the geoCARB Team. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations. Atmos. Meas. Tech. 7, 959–981 (2014).

    Google Scholar 

  189. Chahine, M. T. et al. Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 87, 911–926 (2006).

    Google Scholar 

  190. Clerbaux, C. et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 9, 6041–6054 (2009).

    Google Scholar 

  191. Han, Y. et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 118, 734–12,748 (2013).

    Google Scholar 

  192. Zou, C. Z. et al. The reprocessed Suomi NPP satellite observations. Remote Sens. 12, 2891 (2020).

    Google Scholar 

  193. Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_CCI): permafrost climate research data package v1 (CEDA, 2020).

  194. Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).

    Google Scholar 

  195. Arctic Climate Impact Assessment. Impacts of a Warming Arctic: Arctic Climate Impact Assessment (Cambridge Univ. Press, 2004).

Download references

Acknowledgements

A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This work is part of the NASA-ESA Arctic Methane and Permafrost Challenge (AMPAC). J.T. acknowledges funding from the Academy of Finland (projects 312125, 337552).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and revision of this paper.

Corresponding author

Correspondence to Kimberley R. Miner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Maija Marushchak, Joshua Dean and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Active layer

In permafrost environments, the top layer of substrate that often freezes in winter and thaws in the spring and summer (less than 50 cm thick in the tundra and up to 3 m in boreal regions).

Talik

A layer of soil that is unfrozen year-round within the permafrost. Often found below lakes, wetlands or rivers.

Permafrost carbon feedback

(PCF). The accelerated release of carbon into the atmosphere from the thawing of the permafrost.

Abrupt thaw

Rapid permafrost thaw that occurs on timescales of a few days to a few years.

Thermokarst

An erosional landscape process of abrupt thaw, resulting in permafrost structural collapse.

Yedoma

Carbon-rich (at least 210 PgC globally), Pleistocene-era permafrost containing up to 90% ice.

RCP4.5

The median Representative Concentration Pathway (RCP) used by the Intergovernmental Panel on Climate Change (IPCC) for climate modelling on the IPCC Fifth Assessment Report in 2014.

RCP8.5

The highest carbon emission scenario Representative Concentration Pathway (RCP) used by the Intergovernmental Panel on Climate Change (IPCC) for climate modelling on the IPCC Fifth Assessment Report in 2014.

Ebullition

The action of bubbling or boiling.

Aerenchymous transference

Movement of gas through air spaces found in aquatic plants.

Rhizome priming

The stimulation of microbial organic matter remineralization due to plant root activity.

Zombie fires

Fires that burn year to year and extend through the winter into the early spring, before wildfire season.

Zero curtain

The transition of water to ice is slowed due to latent heat release in the surrounding soil, despite sub-zero air temperatures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miner, K.R., Turetsky, M.R., Malina, E. et al. Permafrost carbon emissions in a changing Arctic. Nat Rev Earth Environ 3, 55–67 (2022). https://doi.org/10.1038/s43017-021-00230-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00230-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing