Biological responses to the press and pulse of climate trends and extreme events

Abstract

The interaction of gradual climate trends and extreme weather events since the turn of the century has triggered complex and, in some cases, catastrophic ecological responses around the world. We illustrate this using Australian examples within a press–pulse framework. Despite the Australian biota being adapted to high natural climate variability, recent combinations of climatic presses and pulses have led to population collapses, loss of relictual communities and shifts into novel ecosystems. These changes have been sudden and unpredictable, and may represent permanent transitions to new ecosystem states without adaptive management interventions. The press–pulse framework helps illuminate biological responses to climate change, grounds debate about suitable management interventions and highlights possible consequences of (non-) intervention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The press–pulse framework, showing the components of climate change and climate variability experienced by biological systems.
Fig. 2: Case study locations overlaid on SAT and SST anomalies.
Fig. 3: Extreme biological responses to extreme weather events.

Change history

  • 11 July 2018

    In the version of this Perspective originally published, affiliations 1 and 4 ware incorrect, and should have read: “1Antarctic Climate & Ecosystems CRC, University of Tasmania, Hobart, Tasmania, Australia” and “4Centre for Water, Climate and Land (CWCL), University of Newcastle, Callaghan, NSW, Australia”. These have been corrected in the online versions of this Perspective.

References

  1. 1.

    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Article  Google Scholar 

  2. 2.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  CAS  Google Scholar 

  3. 3.

    Wu, J. Detecting and attributing the effects of climate change on the distributions of snake species over the past 50 years. Environ. Manag. 57, 207–219 (2016).

    Article  Google Scholar 

  4. 4.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    Article  CAS  Google Scholar 

  5. 5.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  6. 6.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  7. 7.

    Sanz-Lazaro, C. Climate extremes can drive biological assemblages to early successional stages compared to several mild disturbances. Sci. Rep. 6, 30607 (2016).

    Article  CAS  Google Scholar 

  8. 8.

    Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article  Google Scholar 

  9. 9.

    Nielsen, U. N. et al. The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere 3, 17 (2012).

    Article  Google Scholar 

  10. 10.

    Zhang, Q. et al. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications. Sci. Rep. 6, 22344 (2016).

    Article  CAS  Google Scholar 

  11. 11.

    Ryan, M. J. et al. Too wet for frogs: changes in a tropical leaf litter community coincide with La Nina. Ecosphere 6, 4 (2015).

    Article  Google Scholar 

  12. 12.

    Thibault, K. M. & Brown, J. H. Impact of an extreme climatic event on community assembly. Proc. Natl Acad. Sci. USA 105, 3410–3415 (2008).

    Article  Google Scholar 

  13. 13.

    Guerrero-Meseguer, L., Marin, A. & Sanz-Lazaro, C. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings. Environ. Pollut. 230, 40–45 (2017).

    Article  CAS  Google Scholar 

  14. 14.

    Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (IPCC, Cambridge Univ. Press, 2012).

  15. 15.

    Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. & Beierkuhnlein, C. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob. Change Biol. 15, 837–849 (2009).

    Article  Google Scholar 

  16. 16.

    Niu, S. L. et al. Plant growth and mortality under climatic extremes: An overview. Environ. Exp. Bot. 98, 13–19 (2014).

    Article  Google Scholar 

  17. 17.

    Tomillo, P. S., Genovart, M., Paladino, F. V., Spotila, J. R. & Oro, D. Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival. Glob. Change Biol. 21, 2980–2988 (2015).

    Article  Google Scholar 

  18. 18.

    Griffith, S. C., Mainwaring, M. C., Sorato, E. & Beckmann, C. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird. R. Soc. Open Sci. 3, 150371 (2016).

    Article  CAS  Google Scholar 

  19. 19.

    Humphreys, M. W. et al. A changing climate for grassland research. New Phytol. 169, 9–26 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    Johansson, J., Bolmgren, K. & Jonzén, N. Climate change and the optimal flowering time of annual plants in seasonal environments. Glob. Change Biol. 19, 197–207 (2013).

    Article  Google Scholar 

  21. 21.

    Stott, P. How climate change affects extreme weather events. Research can increasingly determine the contribution of climate change to extreme events such as droughts. Science 352, 1517–1518 (2016).

    Article  CAS  Google Scholar 

  22. 22.

    Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).

    Article  Google Scholar 

  23. 23.

    Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology—theory and Practice. Ecology 65, 1–13 (1984).

    Article  Google Scholar 

  24. 24.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  Google Scholar 

  25. 25.

    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280, 20122829 (2013).

    Article  Google Scholar 

  26. 26.

    Boucek, R. E. & Rehage, J. S. Climate extremes drive changes in functional community structure. Glob. Change Biol. 20, 1821–1831 (2014).

    Article  Google Scholar 

  27. 27.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article  CAS  Google Scholar 

  28. 28.

    Enright, N. J., Fontaine, J. B., Bowman, D., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

    Article  Google Scholar 

  29. 29.

    Laurance, W. F. et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Conserv. 144, 1472–1480 (2011).

    Article  Google Scholar 

  30. 30.

    Nicholls, N., Drosdowsky, W. & Lavery, B. Australian rainfall variability and change. Weather Forecast 52, 66–67 (1997).

    Google Scholar 

  31. 31.

    Peel, M. C., McMahon, T. A. & Finlayson, B. L. Continental differences in the variability of annual runoff-update and reassessment. J. Hydrol. 295, 185–197 (2004).

    Article  Google Scholar 

  32. 32.

    Stern, H., de Hoedt, G. & Ernst, J. Objective classification of Australian climates. Aust. Meteorol. Mag. 49, 87–96 (2000).

    Google Scholar 

  33. 33.

    Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009).

    Article  Google Scholar 

  34. 34.

    Marshall, A. G. et al. Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim. Dynam. 43, 1915–1937 (2014).

    Article  Google Scholar 

  35. 35.

    Ummenhofer, C. C. et al. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 36, L04706 (2009).

    Article  Google Scholar 

  36. 36.

    Taschetto, A. S., Sen Gupta, A., Ummenhofer, C. C. & England, M. H. Can Australian multiyear droughts and wet spells be generated in the absence of oceanic variability? J. Clim. 29, 6201–6221 (2016).

    Article  Google Scholar 

  37. 37.

    Mariani, M. & Fletcher, M. S. The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia. Geophys. Res. Lett. 43, 1702–1709 (2016).

    Article  Google Scholar 

  38. 38.

    Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dynam. 15, 319–324 (1999).

    Article  Google Scholar 

  39. 39.

    Williamson, G. J. et al. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environ. Res. Lett. 11, 035003 (2016).

    Article  Google Scholar 

  40. 40.

    Climate Change in Australia: Information for Australia’s Natural Resource Management Regions (CSIRO and Bureau of Meteorology, 2015).

  41. 41.

    Jakob, D. & Walland, D. Variability and long-term change in Australian temperature and precipitation extremes. Weather Clim. Extrem. 14, 36–55 (2016).

    Article  Google Scholar 

  42. 42.

    Braganza, K. et al. U pdate on the State of the Climate, Long-term Trends and Associated Causes Technical Report No. 36 (CAWCR, 2011).

  43. 43.

    Pearce, A. et al. The “Marine Heat Wave” off Western Australia During the Summer of 2010/11 Report No. 222 (Department of Fisheries, 2011).

  44. 44.

    Hope, P. K., Drosdowsky, W. & Nicholls, N. Shifts in the synoptic systems influencing southwest Western Australia. Clim. Dynam. 26, 751–764 (2006).

    Article  Google Scholar 

  45. 45.

    White, N. J. et al. Australian sea levels-trends, regional variability and influencing factors. Earth Sci. Rev. 136, 155–174 (2014).

    Article  Google Scholar 

  46. 46.

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) (Cambridge Univ. Press, 2012).

  47. 47.

    Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    Article  CAS  Google Scholar 

  48. 48.

    Alexander, L. V. & Arblaster, J. M. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol. 29, 417–435 (2009).

    Article  Google Scholar 

  49. 49.

    Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, D05109 (2006).

    Google Scholar 

  50. 50.

    Lewis, S. C. & King, A. D. Dramatically increased rate of observed hot record breaking in recent Australian temperatures. Geophys. Res. Lett. 42, 7776–7784 (2015).

    Article  Google Scholar 

  51. 51.

    Clarke, H., Lucas, C. & Smith, P. Changes in Australian fire weather between 1973 and 2010. Int. J. Climatol. 33, 931–944 (2013).

    Article  Google Scholar 

  52. 52.

    King, A. D., Karoly, D. J. & Henley, B. J. Australian climate extremes at 1.5 °C and 2 °C of global warming. Nat. Clim. Change 7, 412–416 (2017).

    Article  Google Scholar 

  53. 53.

    Lewis, S. C. & Karoly, D. J. Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709 (2013).

    Article  Google Scholar 

  54. 54.

    Perkins, S. E. & Gibson, P. B. Increased risk of the 2014 Australian May heatwave due to anthropogenic activity. Bull. Am. Meteorol. Soc. 96, S154–S157 (2015).

    Article  Google Scholar 

  55. 55.

    King, A. D. et al. Extreme rainfall variability in Australia: patterns, drivers, and predictability. J. Clim. 27, 6035–6050 (2014).

    Article  Google Scholar 

  56. 56.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).

    Article  Google Scholar 

  57. 57.

    Vance, T. R., van Ommen, T. D., Curran, M. A. J., Plummer, C. T. & Moy, A. D. A millennial proxy record of ENSO and Eastern Australian rainfall from the Law Dome Ice Core, East Antarctica. J. Clim. 26, 710–725 (2013).

    Article  Google Scholar 

  58. 58.

    Gallant, A. J. E. & Gergis, J. An experimental streamflow reconstruction for the River Murray, Australia, 1783–1988. Water Resour. Res. 47, W00G04 (2011).

    Google Scholar 

  59. 59.

    Reeves, J. M. et al. Palaeoenvironmental change in tropical Australasia over the last 30,000 years—a synthesis by the OZ-INTIMATE group. Quat. Sci. Rev. 74, 97–114 (2013).

    Article  Google Scholar 

  60. 60.

    Gaffney, O. & Steffen, W. The Anthropocene equation. Anthr. Rev. 4, 53–61 (2017).

    Article  Google Scholar 

  61. 61.

    IPCC C limate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  62. 62.

    Widlansky, M. J., Timmermann, A. & Cai, W. Future extreme sea level seesaws in the tropical Pacific. Sci. Adv. 1, e1500560 (2015).

    Article  Google Scholar 

  63. 63.

    Lukas, R., Hayes, S. P. & Wyrtki, K. Equatorial sea-level response during the 1982–1983 El-Nino. J. Geophys. Res. Oceans 89, 425–430 (1984).

    Article  Google Scholar 

  64. 64.

    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).

    Article  Google Scholar 

  65. 65.

    Cowan, T. et al. More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J. Clim. 27, 5851–5871 (2014).

    Article  Google Scholar 

  66. 66.

    Alexander, L. V. & Arblaster, J. M. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather Clim. Extrem. 15, 34–56 (2017).

    Article  Google Scholar 

  67. 67.

    Pitman, A. J., Narisma, G. T. & McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Climatic Change 84, 383–401 (2007).

    Article  Google Scholar 

  68. 68.

    Clarke, H. G., Smith, P. L. & Pitman, A. J. Regional signatures of future fire weather over eastern Australia from global climate models. Int. J. Wildland Fire 20, 550–562 (2011).

    Article  Google Scholar 

  69. 69.

    Fox-Hughes, P., Harris, R. M., Lee, G., Grose, M. & Bindoff, N. L. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 23, 309–321 (2014).

    Article  Google Scholar 

  70. 70.

    Dowdy, A. J. & Mills, G. A. Atmospheric and fuel moisture characteristics associated with lightning-attributed fires. J. Appl. Meteorol. Climatol. 51, 2025–2037 (2012).

    Article  Google Scholar 

  71. 71.

    Power, S. B., Delage, F. P. D., Chung, C. T. Y., Ye, H. & Murphy, B. F. Humans have already increased the risk of major disruptions to Pacific rainfall. Nat. Commun. 8, 14368 (2017).

    Article  CAS  Google Scholar 

  72. 72.

    McGregor, S., Timmermann, A., England, M. H., Timm, O. E. & Wittenberg, A. T. Inferred changes in El Nino-Southern Oscillation variance over the past six centuries. Clim. Past. 9, 2269–2284 (2013).

    Article  Google Scholar 

  73. 73.

    Ummenhofer, C. C. et al. How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Nina event? Geophys. Res. Lett. 42, 9942–9951 (2015).

    Article  Google Scholar 

  74. 74.

    Cai, W. J. et al. Increased frequency of extreme La Nina events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  75. 75.

    Chung, C. T. Y., Power, S. B., Arblaster, J. M., Rashid, H. A. & Roff, G. L. Nonlinear precipitation response to El Nino and global warming in the Indo-Pacific. Clim. Dynam. 42, 1837–1856 (2014).

    Article  Google Scholar 

  76. 76.

    Cerrano, C. & Bavestrello, G. Medium-term effects of die-off of rocky benthos in the Ligurian Sea. What can we learn from gorgonians? Chem. Ecol. 24, 73–82 (2008).

    Article  Google Scholar 

  77. 77.

    Asner, G. P. et al. Progressive forest canopy water loss during the 2012-2015 California drought. Proc. Natl Acad. Sci. USA 113, E249–E255 (2016).

    Article  CAS  Google Scholar 

  78. 78.

    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).

    Article  Google Scholar 

  79. 79.

    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).

    Article  Google Scholar 

  80. 80.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    Article  CAS  Google Scholar 

  81. 81.

    Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).

    Article  Google Scholar 

  82. 82.

    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 4881–4886 (2017).

    Article  CAS  Google Scholar 

  83. 83.

    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Phil. Trans. R. Soc. B 372, 20160135 (2017).

    Article  Google Scholar 

  84. 84.

    Nicotra, A. B., Beever, E. A., Robertson, A. L., Hofmann, G. E. & O’Leary, J. Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conserv. Biol. 29, 1268–1278 (2015).

    Article  Google Scholar 

  85. 85.

    Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B 275, 419–425 (2008).

    Article  Google Scholar 

  86. 86.

    Lindenmayer, D. B. in Biodiversity: Integrating Conservation and Production: Case Studies from Australian Farms, Forests and Fisheries (eds Lefroy, T. et al.) 21–29 (CSIRO, Clayton, 2008).

  87. 87.

    Altwegg, R., Visser, V., Bailey, L. D. & Erni, B. Learning from single extreme events. Phil. Trans. R. Soc. B 372, 20160141 (2017).

    Article  Google Scholar 

  88. 88.

    Bailey, L. D. & van de Pol, M. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96 (2016).

    Article  Google Scholar 

  89. 89.

    Pullin, A. S. & Knight, T. M. Doing more good than harm—building an evidence-base for conservation and environmental management. Biol. Conserv. 142, 931–934 (2009).

    Article  Google Scholar 

  90. 90.

    Weeks, A. R., Stoklosa, J. & Hoffmann, A. A. Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front. Zool. 13, 31 (2016).

    Article  CAS  Google Scholar 

  91. 91.

    GISTEMP Team GISS Surface Temperature Analysis (GISTEMP) (NASA Goddard Institute for Space Studies, accessed 7 September 2016); https://data.giss.nasa.gov/gistemp

  92. 92.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  93. 93.

    Jones, D. A., Wang, W. & Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 58, 233–248 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the result of a workshop on climate variability and biodiversity (past, present, future), funded by The National Climate Change Adaptation Research Facility (NCCARF) and organized by N. Roslyn. D. Rosauer participated in the workshop. K. Henle (Helmholtz Centre for Environmental Research–UFZ) gave helpful advice about management options.

Author information

Affiliations

Authors

Contributions

R.M.B.H. and D.M.J.S.B. conceived the study, with input from all authors. R.M.B.H. led the writing. M. L. suggested the application of the Press-Pulse framework in this context. All authors contributed to the formulation of the paper and contributed to the first manuscript draft and subsequent revisions. T.A.R. created Fig. 1. T.V. created Fig. 2, based on data and analyses contributed by C.T., S.E.P-K, S.M., P.J.M. and T.A.R. L.J.B and R.M.B.H. created Fig. 3 and compiled the Supplementary Material. P.J.M., D.M.J.S.B. and N.D.C. contributed images to Fig. 3. R.M.B.H., L.J.B., N.R.A. and A.B.N. wrote the Introduction and Discussion. T.V. led the writing of the Climate drivers section, with contributions from C.T., S.E.P-K, R.M.B.H., S.M. and P.J.M. D.M.J.S.B. led the writing of the obligate seeder forest collapse and fire in Gondwanan refugia case studies, with analyses contributed by G.W. M.F. contributed to the fire in Gondwanan refugia case study. L.B.H. led the writing of the mangrove dieback case study, with contributions from N.C.D. T.W. and L.E.C. wrote the kelp forest regime shift case study. M.L. and M.K. wrote the arid zone boom and bust case study. P.J.M. and C.W. wrote the riverine forest decline case study.

Corresponding author

Correspondence to R. M. B. Harris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1-6, Supplementary Figures S1, S2, S1.3.1, S1.3.2, S1.41, S1.42, S1.51, S1.52, S1.61, S1.62

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harris, R.M.B., Beaumont, L.J., Vance, T.R. et al. Biological responses to the press and pulse of climate trends and extreme events. Nature Clim Change 8, 579–587 (2018). https://doi.org/10.1038/s41558-018-0187-9

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing