Methane production as key to the greenhouse gas budget of thawing permafrost

Abstract

Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change1,2. Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils3,4,5,6 and a stronger permafrost carbon–climate feedback from drained (oxic) soils1,7. Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2–carbon equivalents (CO2–Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account8. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO2–C kgC−1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2–Ce (241 ± 138 g CO2–Ce kgC−1) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CH4 production in a permafrost sample from Kurungnakh Island (10.9–11.7 m depth) that did not show CH4 production during 2,500 days of incubation and was then inoculated with a sample from the same sampling site (21.0–21.7 m depth) that contained active methanogens.
Fig. 2: Calibration of a two-pool carbon-decomposition model with the obtained observational data.
Fig. 3: Prediction of CO2 and CH4 production from thawing permafrost organic carbon until 2100.

References

  1. 1.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    McGuire, A. D., Chapin, F. S. III, Walsh, J. E. & Wirth, C. Integrated regional changes in arctic climate feedbacks: implications for the global climate system. Annu. Rev. Environ. Resour. 31, 61–91 (2006).

    Article  Google Scholar 

  3. 3.

    Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Glob. Change Biol. 18, 515–527 (2012).

    Article  Google Scholar 

  4. 4.

    Treat, C. C. et al. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob. Change Biol. 20, 2674–2686 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Waldrop, M. P. et al. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob. Change Biol. 16, 2543–2554 (2010).

    Google Scholar 

  6. 6.

    Roy Chowdhury, T. et al. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Glob. Change Biol. 21, 722–737 (2015).

    Article  Google Scholar 

  7. 7.

    Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).

    Article  Google Scholar 

  8. 8.

    Myhre, et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, Cambridge, UK, 2013).

  9. 9.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  10. 10.

    Jorgenson, M. T. et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 8, 035017 (2013).

    Article  Google Scholar 

  11. 11.

    Bring, A. et al. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 121, 621–649 (2016).

    Article  Google Scholar 

  12. 12.

    Treat, C. C. et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob. Change Biol. 21, 2787–2803 (2015).

    Article  Google Scholar 

  13. 13.

    Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Johnston, C. E. et al. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence. Environ. Res. Lett. 9, 085004 (2014).

    Article  Google Scholar 

  15. 15.

    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013).

    Article  Google Scholar 

  16. 16.

    Liebner, S. et al. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost. Front. Microbiol. 6, 356 (2015).

    Article  Google Scholar 

  17. 17.

    Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Ping, C. L., Jastrow, J. D., Jorgenson, M. T., Michaelson, G. J. & Shur, Y. L. Permafrost soils and carbon cycling. SOIL 1, 147–171 (2015).

    Article  Google Scholar 

  19. 19.

    Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).

    Article  Google Scholar 

  20. 20.

    Symons, G. E. & Buswell, A. M. The methane fermentation of carbohydrates. J. Am. Chem. Soc. 55, 2028–2036 (1933).

    CAS  Article  Google Scholar 

  21. 21.

    Nilsson, M. & Öquist, M. in Carbon Cycling in Northern Peatlands (eds Baird, A. J., Belyea, L. R., Comas, X., Reeve, A. S. & Slater, L. D.) 131–144 (Geophysical Monograph Series Vol. 184, American Geophysical Union, Washington, DC, USA 2009).

  22. 22.

    Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl Acad. Sci. USA 111, 5819–5824 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L. & Pfeiffer, E.-M. Regulation of methane production, oxidation and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. J. Geophys. Res. Biogeosci. 120, 2525–2541 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Change 7, 507–511 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).

    Article  Google Scholar 

  26. 26.

    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Popp, T. J., Chanton, J. P., Whiting, G. J. & Grant, N. Evaluation of methane oxidation in the rhizosphere of a Carex dominated fen in north central Alberta, Canada. Biogeochemistry 51, 259–281 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    Friborg, T., Soegaard, H., Christensen, T. R., Lloyd, C. R. & Panikov, N. S. Siberian wetlands: where a sink is a source. Geophys. Res. Lett. 30, 2129–2132 (2003).

    Article  Google Scholar 

  30. 30.

    Wille, C., Kutzbach, L., Sachs, T., Wagner, D. & Pfeiffer, E.-M. Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Glob. Change Biol. 14, 1395–1408 (2008).

    Article  Google Scholar 

  31. 31.

    Boike, J. et al. Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011). Biogeosciences 10, 2105–2128 (2013).

    Article  Google Scholar 

  32. 32.

    Kutzbach, L., Wagner, D. & Pfeiffer, E.-M. Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69, 341–362 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    Morgenstern, A. et al. Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. Geomorphology 201, 363–379 (2013).

    Article  Google Scholar 

  34. 34.

    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).

    CAS  Article  Google Scholar 

  35. 35.

    Millero, F., Huang, F., Graham, T. & Pierrot, D. The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochim. Cosmochim. Acta 71, 46–55 (2007).

    CAS  Article  Google Scholar 

  36. 36.

    Amundson, R. & Baisden, W. T. in Methods in Ecosystem Science (eds Sala, O. E., Jackson, R. B., Mooney, H. A. & Howarth, R. B.) 117–137 (Springer, New York, USA, 2000).

  37. 37.

    Andrén, O. & Kätterer, T. ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecol. Appl. 7, 1226–1236 (1997).

    Article  Google Scholar 

  38. 38.

    Meentemeyer, V. Macroclimate and lignin control of litter decomposition rates. Ecology 59, 465–472 (1978).

    CAS  Article  Google Scholar 

  39. 39.

    Steinberg, L. M. & Regan, J. M. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl. Environ. Microbiol. 75, 4435–4442 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support through the Cluster of Excellence 'CliSAP' (EXC177), Universität Hamburg, funded through the German Research Foundation, the CarboPerm project funded by the German Ministry for Research and Education (03G0836A) to C.K., C.B. and E.-M.P. and the Helmholtz Gemeinschaft by funding the Helmholtz Young Investigators Group of S.L. (VH-NG-919). We also thank G. Hugelius for valuable discussions, D. Wagner and S. Zubrzycki for providing samples, B. Schwinge for laboratory assistance, W. Schneider and G. Stoof for help during the field campaigns and the German and Russian colleagues from the Alfred Wegener Institute in Potsdam, the Lena Delta Reserve in Tiksi and the Tiksi Hydrobase for logistical support.

Author information

Affiliations

Authors

Contributions

C.K. and C.B. designed the study. C.K., E.-M.P and M.N.G. did the field work. C.K. conducted the incubation experiment, C.B. calibrated the model and predicted site-level and pan-Arctic GHG production and S.L. quantified the methanogen abundance. C.K. and C.B wrote the manuscript with contributions from all the co-authors.

Corresponding author

Correspondence to Christian Knoblauch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Figures 1–2, Supplementary Tables 1–6 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knoblauch, C., Beer, C., Liebner, S. et al. Methane production as key to the greenhouse gas budget of thawing permafrost. Nature Clim Change 8, 309–312 (2018). https://doi.org/10.1038/s41558-018-0095-z

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing