Challenges and opportunities for improved understanding of regional climate dynamics

Abstract

Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical–extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sea surface temperature trends from observations for the period 1979–2012 indicating the concept of inter-ocean-basin teleconnections.
Fig. 2: The influence of sharp SST gradients in the Gulf Stream on the hydrological cycle of individual storms and their rectification on the mean climate state.
Fig. 3: Schematic indicating the concept of the ‘hierarchies of models’.

References

  1. 1.

    Bjerknes, J. Atlantic air-sea interaction. Adv. Geophys. 20, 1–84 (1964).

    Google Scholar 

  2. 2.

    Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Meehl, G. et al. Decadal climate prediction: An update from the trenches. Bull. Am. Meteorol. Soc. 95, 243–267 (2014).

    Article  Google Scholar 

  4. 4.

    Andrews, T., Gregory, J., Webb, M. & Taylor, K. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett. http://doi.org/chpc (2012).

  5. 5.

    Feldl, N. & Bordoni, S. Characterizing the Hadley circulation response through regional climate feedbacks. J. Clim. 29, 613–622 (2016).

    Article  Google Scholar 

  6. 6.

    Shepherd, T. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Article  Google Scholar 

  8. 8.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

  9. 9.

    Masato, G., Woollings, T. & Hoskins, B. Structure and impact of atmospheric blocking over the Euro-Atlantic region in present-day and future simulations. Geophys. Res. Lett. 41, 1051–1058 (2014).

    Article  Google Scholar 

  10. 10.

    Zhang, X., Zwiers, F., Li, G., Wan, H. & Cannon, A. Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci. 10, 255–259 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    van der Wiel, K. et al. The resolution dependence of contiguous US precipitation extremes in response to CO2 forcing. J. Clim. 29, 7991–8012 (2016).

    Article  Google Scholar 

  12. 12.

    Woollings, T., Gregory, J., Pinto, J., Reyers, M. & Brayshaw, D. Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci. 5, 313–317 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Butler, A., Thompson, D. & Heikes, R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Clim. 23, 3474–3496 (2010).

    Article  Google Scholar 

  14. 14.

    Scaife, A. et al. Climate change projections and stratosphere-troposphere interaction. Clim. Dynam. 38, 2089–2097 (2012).

    Article  Google Scholar 

  15. 15.

    Manzini, E. et al. Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J. Geophys. Res. Atmos. 119, 7979–7998 (2014).

    Article  Google Scholar 

  16. 16.

    Li, M., Woollings, T., Hodges, K. & Masato, G. Extratropical cyclones in a warmer, moister climate: A recent Atlantic analogue. Geophys. Res. Lett. 41, 8594–8601 (2014).

    Article  Google Scholar 

  17. 17.

    Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G. & Stephenson, D. B. A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Clim. 26, 5846–5862 (2013).

    Article  Google Scholar 

  18. 18.

    de Vries, H., Woollings, T., Anstey, J., Haarsma, R. & Hazeleger, W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dynam. 41, 2643–2654 (2013).

    Article  Google Scholar 

  19. 19.

    Shaw, T. et al. Storm track processes and the opposing influences of climate change. Nat. Geosci. 9, 656–664 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Lehmann, J., Coumou, D., Frieler, K., Eliseev, A. & Levermann, A. Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett. 9, 084002 (2014).

    Article  Google Scholar 

  21. 21.

    Swart, N., Fyfe, J., Gillett, N. & Marshall, G. Comparing trends in the southern annular mode and surface westerly jet. J. Clim. 28, 8840–8859 (2015).

    Article  Google Scholar 

  22. 22.

    Barnes, E. & Screen, J. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Inter. Rev. Clim. Chang. 6, 277–286 (2015).

    Article  Google Scholar 

  23. 23.

    Semmler, T. et al. Seasonal atmospheric responses to reduced Arctic sea ice in an ensemble of coupled model Simulations. J. Clim. 29, 5893–5913 (2016).

    Article  Google Scholar 

  24. 24.

    Barnes, E. & Polvani, L. CMIP5 Projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Clim. 28, 5254–5271 (2015).

    Article  Google Scholar 

  25. 25.

    Deser, C., Tomas, R. & Sun, L. The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Clim. 28, 2168–2186 (2015).

    Article  Google Scholar 

  26. 26.

    Francis, J. & Vavrus, S. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. http://doi.org/hq3 (2012).

  27. 27.

    England, M. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 4, 222–227 (2014).

    Article  Google Scholar 

  28. 28.

    Kosaka, Y. & Xie, S. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J. & Trenberth, K. E. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 26, 7298–7310 (2013).

    Article  Google Scholar 

  30. 30.

    Kucharski, F., Kang, I., Farneti, R. & Feudale, L. Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett. http://doi.org/dgcp47 (2011).

  31. 31.

    Li, X., Xie, S., Gille, S. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Chang. 6, 275–279 (2016).

    Article  Google Scholar 

  32. 32.

    McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 4, 888–892 (2014).

    Article  Google Scholar 

  33. 33.

    Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dynam. 43, 1357–1379 (2014).

    Article  Google Scholar 

  34. 34.

    Booth, B., Dunstone, N., Halloran, P., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 485, 534–534 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Clement, A. et al. The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 350, 320–324 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci. 70, 1135–1144 (2013).

    Article  Google Scholar 

  37. 37.

    Zhang, R. et al. Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science 352, 1527 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Gulev, S., Latif, M., Keenlyside, N., Park, W. & Koltermann, K. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499, 464–467 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Li, C., Stevens, B. & Marotzke, J. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett. 42, 8131–8139 (2015).

    Article  Google Scholar 

  40. 40.

    Deser, C., Guo, R. & Lehner, F. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett. 44, 7945–7954 (2017).

    Article  Google Scholar 

  41. 41.

    Kajtar, J. B., Santoso, A., McGregor, S., England, M. & Baillie, Z. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Clim. Dynam. http://doi.org/chph (2017).

  42. 42.

    Holland, P. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Simpkins, G., McGregor, S., Taschetto, A., Ciasto, L. & England, M. Tropical connections to climatic change in the extratropical Southern Hemisphere: the role of Atlantic SST trends. J. Clim. 27, 4923–4936 (2014).

    Article  Google Scholar 

  44. 44.

    Purich, A. et al. Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Clim. 29, 8931–8948 (2016).

    Article  Google Scholar 

  45. 45.

    Ding, Q., Steig, E., Battisti, D. & Kuttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 4, 398–403 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Ciasto, L., Simpkins, G. & England, M. Teleconnections between Tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 28, 56–65 (2015).

    Article  Google Scholar 

  47. 47.

    Meehl, G., Hu, A., Santer, B. & Xie, S. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Clim. Chang. 6, 1005–1008 (2016).

    Article  Google Scholar 

  48. 48.

    Li, X., Holland, D., Gerber, E. & Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505, 538–542 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Talento, S. & Barriero, M. Control of the South Atlantic Convergence Zone by extratropical thermal forcing. Clim. Dynam. http://doi.org/chpj (2017).

  50. 50.

    Hwang, Y.-T., Xie, S.-P., Deser, C. & Kang, S., M. Connecting tropical climate change with Southern Ocean heat uptake. Geophys. Res. Lett. 44, 9449–9457 (2017).

    Article  Google Scholar 

  51. 51.

    Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Chang. 5, 240–245 (2015).

    Article  Google Scholar 

  52. 52.

    Bodas-Salcedo, A. et al. Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Clim. 29, 4213–4228 (2016).

    Article  Google Scholar 

  53. 53.

    Hawcroft, M. et al. Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Clim. Dynam. 48, 2279–2295 (2017).

    Article  Google Scholar 

  54. 54.

    Jin, F., Kim, S. & Bejarano, L. A coupled-stability index for ENSO. Geophys. Res. Lett. http://doi.org/c22zdv (2006).

  55. 55.

    Dommenget, D. & Latif, M. A cautionary note on the interpretation of EOFs. J. Clim. 15, 216–225 (2002).

    Article  Google Scholar 

  56. 56.

    Monahan, A., Fyfe, J., Ambaum, M., Stephenson, D. & North, G. Empirical orthogonal functions: The medium is the message. J. Clim. 22, 6501–6514 (2009).

    Article  Google Scholar 

  57. 57.

    Barsugli, J. & Battisti, D. The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci. 55, 477–493 (1998).

    Article  Google Scholar 

  58. 58.

    Barreiro, M. Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. Clim. Dynam. 35, 1493–1508 (2010).

    Article  Google Scholar 

  59. 59.

    Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S. & Small, R. Influence of the Gulf Stream on the troposphere. Nature 452, 206–251 (2008).

    CAS  Article  Google Scholar 

  60. 60.

    Nakamura, H., Sampe, T., Tanimoto, Y. & Shimpo, A. in Earth’s Climate: The Atmosphere–Ocean Interaction. (eds Wang, C. et al.) (American Geophysical Union, 2004).

  61. 61.

    Ma, X. et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature 535, 533–537 (2016).

    CAS  Article  Google Scholar 

  62. 62.

    O’Reilly, C. H., Minobe, S. & Kuwano-Yoshida, A. The influence of the Gulf Stream on wintertime European blocking. Clim. Dynam. 47, 1545–1567 (2016).

    Article  Google Scholar 

  63. 63.

    O’Reilly, C. H., Minobe, S., Kuwano-Yoshida, A. & Woollings, T. The Gulf Stream influence on wintertime North Atlantic jet variability. Q. J. R. Meteorol. Soc. 143, 173–183 (2016).

    Article  Google Scholar 

  64. 64.

    Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. & Wernli, H. Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci. 8, 610–614 (2015).

    CAS  Article  Google Scholar 

  65. 65.

    Kuwano-Yoshida, A. & Minobe, S. Storm-track response to SST fronts in the Northwestern Pacific region in an AGCM. J. Clim. 30, 1081–1102 (2017).

    Article  Google Scholar 

  66. 66.

    Ma, X. et al. Winter extreme flux events in the Kuroshio and Gulf Stream extension regions and relationship with modes of North Pacific and Atlantic variability. J. Clim. 28, 4950–4970 (2015).

    Article  Google Scholar 

  67. 67.

    Shaffrey, L. et al. UK HiGEM: The new UK high-resolution global environment model — model description and basic evaluation. J. Clim. 22, 1861–1896 (2009).

    Article  Google Scholar 

  68. 68.

    Masson, S. et al. Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim. Dynam. 39, 681–707 (2012).

    Article  Google Scholar 

  69. 69.

    Cai, W. et al. Increasing frequency of extreme El Nino events due to greenhouse warming. Nat. Clim. Chang. 4, 111–116 (2014).

    CAS  Article  Google Scholar 

  70. 70.

    Cai, W. et al. Increased frequency of extreme La Nina events under greenhouse warming. Nat. Clim. Chang. 5, 132–137 (2015).

    Article  Google Scholar 

  71. 71.

    Latif, M., Semenov, V. & Park, W. Super El Ninos in response to global warming in a climate model. Clim. Chang. 132, 489–500 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Nino and related precipitation variability. Nature 502, 541–545 (2013).

    CAS  Article  Google Scholar 

  73. 73.

    Xie, S.-P. et al. Towards predictive understanding of regional climate change. Nat. Clim. Chang. 5, 921–930 (2015).

    Article  Google Scholar 

  74. 74.

    Ferrett, S., Collins, M. & Ren, H.-L. Understanding bias in the evaporative damping of El Nino-Southern Oscillation events in CMIP5 Models. J. Clim. 30, 6351–6370 (2017).

    Article  Google Scholar 

  75. 75.

    Small, R. et al. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst. 6, 1065–1094 (2014).

    Article  Google Scholar 

  76. 76.

    Haarsma, R. et al. High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci. Model. Dev. 9, 4185–4208 (2016).

    Article  Google Scholar 

  77. 77.

    Kendon, E. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Chang. 4, 570–576 (2014).

    Article  Google Scholar 

  78. 78.

    Brisson, E. et al. How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim. Dynam. 47, 3043–3061 (2016).

    Article  Google Scholar 

  79. 79.

    Alexander, M. et al. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

    Article  Google Scholar 

  80. 80.

    Chikamoto, Y. et al. Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun. 6, 6869 (2015).

    CAS  Article  Google Scholar 

  81. 81.

    Sutton, R. & Mathieu, P. Response of the atmosphere-ocean mixed-layer system to anomalous ocean heat-flux convergence. Q. J. R. Meteorol. Soc. 128, 1259–1275 (2002).

    Article  Google Scholar 

  82. 82.

    Kwon, Y., Deser, C. & Cassou, C. Coupled atmosphere-mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension. Clim. Dynam. 36, 2295–2312 (2011).

    Article  Google Scholar 

  83. 83.

    Ding, H. et al. The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Clim. Dynam. 42, 367–379 (2014).

    Article  Google Scholar 

  84. 84.

    Boer, G. et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model. Dev. 9, 3751–3777 (2016).

    Article  Google Scholar 

  85. 85.

    Frierson, D. & Hwang, Y. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 25, 720–733 (2012).

    Article  Google Scholar 

  86. 86.

    Haywood, J. et al. The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2-ES coupled climate model. Geophys. Res. Lett. 43, 395–403 (2016).

    Article  Google Scholar 

  87. 87.

    Gleckler, P. et al. A more powerful reality test for climate models. EOS http://doi.org/chpp (2016).

  88. 88.

    Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci. 1, 515–519 (2008).

    CAS  Article  Google Scholar 

  89. 89.

    Tamarin, T. & Kaspi, Y. The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci. 73, 1687–1707 (2016).

    Article  Google Scholar 

  90. 90.

    Simpson, I., Seager, R., Ting, M. & Shaw, T. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Chang. 6, 65–70 (2016).

    Article  Google Scholar 

  91. 91.

    Kaspi, Y. & Schneider, T. Winter cold of eastern continental boundaries induced by warm ocean waters. Nature 471, 621–624 (2011).

    CAS  Article  Google Scholar 

  92. 92.

    Collins, M. et al. Quantifying future climate change. Nat. Clim. Chang. 2, 403–409 (2012).

    Article  Google Scholar 

  93. 93.

    Farneti, R. & Vallis, G. Meridional energy transport in the coupled atmosphere–ocean system: compensation and partitioning. J. Clim. 26, 7151–7166 (2013).

    Article  Google Scholar 

  94. 94.

    Held, I. & Saurez, M. A proposal for the intercomparison of the dynamical cores of atmospheric general-circulation models. Bull. Am. Meteorol. Soc. 75, 1825–1830 (1994).

    Article  Google Scholar 

  95. 95.

    Frierson, D., Held, I. & Zurita-Gotor, P. A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci. 63, 2548–2566 (2006).

    Article  Google Scholar 

  96. 96.

    Medeiros, B., Stevens, B. & Bony, S. Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Clim. Dynam. 44, 1957–1977 (2015).

    Article  Google Scholar 

  97. 97.

    Chemke, R. & Kaspi, Y. Poleward migration of eddy-driven jets. J. Adv. Model. Earth Syst. 7, 1457–1471 (2015).

    Article  Google Scholar 

  98. 98.

    Yuval, J. & Kaspi, Y. The effect of vertical baroclinicity concentration on atmospheric macroturbulence scaling relations. J. Atmos. Sci. 74, 1651–1667 (2017).

    Article  Google Scholar 

  99. 99.

    Yuval, J. & Kaspi, Y. Eddy activity sensitivity to changes in the vertical structure of baroclinicity. J. Atmos. Sci. 73, 1709–1726 (2016).

    Article  Google Scholar 

  100. 100.

    Tamarin, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).

    Article  Google Scholar 

  101. 101.

    Walker, J., Bordoni, S. & Schneider, T. Interannual variability in the large-scale dynamics of the South Asian summer monsoon. J. Clim. 28, 3731–3750 (2015).

    Article  Google Scholar 

  102. 102.

    Sperber, K. et al. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dynam. 41, 2711–2744 (2013).

    Article  Google Scholar 

  103. 103.

    Levine, R., Turner, A., Marathayil, D. & Martin, G. The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Clim. Dynam. 41, 155–172 (2013).

    Article  Google Scholar 

  104. 104.

    Held, I. & Soden, B. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of CLIVAR in setting up the Climate Dynamics Panel and their travel support for hosting panel meetings. M.C. and S.M. conceived the paper and also co-chair the CLIVAR Climate Dynamics Panel. All other authors contributed to the writing. C.O.R. produced Fig. 2 and M.C. acknowledges support from NERC NE/N018486/1. N.K. acknowledges support from the ERC (grant 648982).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collins, M., Minobe, S., Barreiro, M. et al. Challenges and opportunities for improved understanding of regional climate dynamics. Nature Clim Change 8, 101–108 (2018). https://doi.org/10.1038/s41558-017-0059-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing