Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides

Abstract

Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries. However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machinery from other natural product families. Here we report lipoavitides, a class of RiPP/fatty-acid hybrid lipopeptides that display a unique, putatively membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N terminus. The HMP is formed via condensation of isobutyryl-coenzyme A (isobutyryl-CoA) and methylmalonyl-CoA catalysed by a 3-ketoacyl-(acyl carrier protein) synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty-acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative RiPPs produced by RiPP/non-RiPP hybrid BGCs.
Fig. 2: Representative BGCs identified in bioinformatics study.
Fig. 3: Heterologous expression and product characterization of lpv.
Fig. 4: Proposed biosynthetic pathway for the HMP moiety.
Fig. 5: Biosynthesis of the HMP moiety.
Fig. 6: Characterization of the acyltransferase LpvE.

Similar content being viewed by others

Data availability

We declare that all data supporting the findings of this study are presented in the main text and Supplementary Information. NCBI (https://www.ncbi.nlm.nih.gov/), Protein Data Bank (PDB; https://www.rcsb.org/) and Uniprot (https://www.uniprot.org/) accessions are referenced in Supplementary Information, and these accessions are publicly accessible on the respective NCBI, RCSB PDB and Uniprot websites. Source data are provided with this paper.

References

  1. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Montalban-Lopez, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Cao, L., Do, T. & Link, A. J. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J. Ind. Microbiol. Biotechnol. 48, kuab005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Melby, J. O., Nard, N. J. & Mitchell, D. A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franz, L., Kazmaier, U., Truman, A. W. & Koehnke, J. Bottromycins - biosynthesis, synthesis and activity. Nat. Prod. Rep. 38, 1659–1683 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Vinogradov, A. A. & Suga, H. Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem. Biol. 27, 1032–1051 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. McIntosh, J. A., Donia, M. S. & Schmidt, E. W. Insights into heterocyclization from two highly similar enzymes. J. Am. Chem. Soc. 132, 4089–4091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burkhart, B. J., Schwalen, C. J., Mann, G., Naismith, J. H. & Mitchell, D. A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Norris, G. E. & Patchett, M. L. The glycocins: in a class of their own. Curr. Opin. Struct. Biol. 40, 112–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Saad, H. et al. Nocathioamides, uncovered by a tunable metabologenomic approach, define a novel class of chimeric lanthipeptides. Angew. Chem. Int. Ed. 60, 16472–16479 (2021).

    Article  CAS  Google Scholar 

  12. Medema, M. H., Cimermancic, P., Sali, A., Takano, E. & Fischbach, M. A. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput. Biol. 10, e1004016 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Robey, M. T., Caesar, L. K., Drott, M. T., Keller, N. P. & Kelleher, N. L. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proc. Natl Acad. Sci. USA 118, e2020230118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Walsh, C. T., Brien, R. V. O. & Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. 52, 7098–7124 (2013).

    Article  CAS  Google Scholar 

  16. Just-Baringo, X., Albericio, F. & Alvarez, M. Thiopeptide antibiotics: retrospective and recent advances. Mar. Drugs 12, 317–351 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noike, M. et al. A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nat. Chem. Biol. 11, 71–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Ortiz-Lopez, F. J. et al. Cacaoidin, first member of the new lanthidin RiPP family. Angew. Chem. Int. Ed. 59, 12654–12658 (2020).

    Article  CAS  Google Scholar 

  19. Jordan, P. A. & Moore, B. S. Biosynthetic pathway connects cryptic ribosomally synthesized posttranslationally modified peptide genes with pyrroloquinoline alkaloids. Cell Chem. Biol. 23, 1504–1514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiebach, V. et al. The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nat. Chem. Biol. 14, 652–654 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Wiebach, V. et al. An amphipathic alpha-helix guides maturation of the ribosomally-synthesized lipolanthines. Angew. Chem. Int. Ed. 59, 16777–16785 (2020).

    Article  CAS  Google Scholar 

  22. Kozakai, R. et al. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat. Chem. 12, 869–877 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Doroghazi, J. R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963–968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blin, K. et al. AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grant-Mackie, E. S., Williams, E. T., Harris, P. W. R. & Brimble, M. A. Aminovinyl cysteine containing peptides: a unique motif that imparts key biological activity. JACS Au 1, 1527–1540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eyles, T. H., Vior, N. M., Lacret, R. & Truman, A. W. Understanding thioamitide biosynthesis using pathway engineering and untargeted metabolomics. Chem. Sci. 12, 7138–7150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, M. et al. Functional genome mining reveals a class V lanthipeptide containing a d-amino acid introduced by an F420H2-dependent reductase. Angew. Chem. Int. Ed. 59, 18029–18035 (2020).

    Article  CAS  Google Scholar 

  28. Kloosterman, A. M. et al. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lantibiotics. PLoS Biol. 18, e3001026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schujman, G. E. & de Mendoza, D. Regulation of type II fatty acid synthase in Gram-positive bacteria. Curr. Opin. Microbiol. 11, 148–152 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, L. et al. Characterization of histidine functionalization and its timing in the biosynthesis of ribosomally synthesized and posttranslationally modified thioamitides. J. Am. Chem. Soc. 144, 4431–4438 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Sikandar, A., Lopatniuk, M., Luzhetskyy, A., Muller, R. & Koehnke, J. Total in vitro biosynthesis of the thioamitide thioholgamide and investigation of the pathway. J. Am. Chem. Soc. 144, 5136–5144 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Enghiad, B. et al. Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination. Nat. Commun. 12, 1171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frattaruolo, L., Lacret, R., Cappello, A. R. & Truman, A. W. A genomics-based approach identifies a thioviridamide-like compound with selective anticancer activity. ACS Chem. Biol. 12, 2815–2822 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Bhushan, R. & Bruckner, H. Use of Marfey’s reagent and analogs for chiral amino acid analysis: assessment and applications to natural products and biological systems. J. Chromatogr. B 879, 3148–3161 (2011).

    Article  CAS  Google Scholar 

  35. Nilsson, J. et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods 6, 809–811 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Gabrielson, S. SciFinder. J. Med. Libr. Assoc. 106, 588–590 (2018).

    Article  PubMed Central  Google Scholar 

  37. Bender, C. L., Alarcon-Chaidez, F. & Gross, D. C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266–292 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu, J. et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 30, 440–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, L., Zhang, Y. X. & Hutchinson, C. R. Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. J. Bacteriol. 176, 6107–6119 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dayem, L. C. et al. Metabolic engineering of a methylmalonyl-CoA mutase–epimerase pathway for complex polyketide biosynthesis in Escherichia coli. Biochemistry 41, 5193–5201 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Okamura, E., Tomita, T., Sawa, R., Nishiyama, M. & Kuzuyama, T. Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proc. Natl Acad. Sci. USA 107, 11265–11270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inahashi, Y. et al. Biosynthesis of trehangelin in Polymorphospora rubra K07-0510: identification of metabolic pathway to angelyl-CoA. ChemBioChem 17, 1442–1447 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Bobik, T. A. & Rasche, M. E. Identification of the human methylmalonyl-CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J. Biol. Chem. 276, 37194–37198 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Peter, D. M., Vogeli, B., Cortina, N. S. & Erb, T. J. A chemo-enzymatic road map to the synthesis of CoA esters. Molecules 21, 517 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morris, G. M., Goodsell, D. S., Huey, R. & Olson, A. J. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 10, 293–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Kuhn, M. L., Majorek, K. A., Minor, W. & Anderson, W. F. Broad-substrate screen as a tool to identify substrates for bacterial Gcn5-related N-acetyltransferases with unknown substrate specificity. Protein Sci. 22, 222–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Ramesh, S. et al. Bioinformatics-guided expansion and discovery of graspetides. ACS Chem. Biol. 16, 2787–2797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, H. B., Perez, C. E., Barber, K. W., Rinehart, J. & Crawford, J. M. Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster. eLife 6, e25229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schor, R., Schotte, C., Wibberg, D., Kalinowski, J. & Cox, R. J. Three previously unrecognised classes of biosynthetic enzymes revealed during the production of xenovulene A. Nat. Commun. 9, 1963 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yee, D. A. et al. Genome mining of alkaloidal terpenoids from a hybrid terpene and nonribosomal peptide biosynthetic pathway. J. Am. Chem. Soc. 142, 710–714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gotze, S. & Stallforth, P. Structure elucidation of bacterial nonribosomal lipopeptides. Org. Biomol. Chem. 18, 1710–1727 (2020).

    Article  PubMed  Google Scholar 

  54. Robbel, L. & Marahiel, M. A. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J. Biol. Chem. 285, 27501–27508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poirel, L., Jayol, A. & Nordmann, P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 30, 557–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huttel, W. Echinocandins: structural diversity, biosynthesis, and development of antimycotics. Appl. Microbiol. Biotechnol. 105, 55–66 (2021).

    Article  PubMed  Google Scholar 

  57. Hubrich, F. et al. Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proc. Natl Acad. Sci. USA 119, e2113120119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pickens, L. B. et al. Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J. Am. Chem. Soc. 131, 17677–17689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ozaki, T. et al. Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat. Commun. 8, 14207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zong, C., Cheung-Lee, W. L., Elashal, H. E., Raj, M. & Link, A. J. Albusnodin: an acetylated lasso peptide from Streptomyces albus. Chem. Commun. 54, 1339–1342 (2018).

    Article  CAS  Google Scholar 

  61. Ziemert, N., Ishida, K., Liaimer, A., Hertweck, C. & Dittmann, E. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int. Ed. 47, 7756–7759 (2008).

    Article  CAS  Google Scholar 

  62. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. Practical Streptomyces Genetics (John Innes Foundation, 2000).

  63. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stewart, J. J. P. MOPAC2016 (Stewart Computational Chemistry, 2016).

  65. Krieger, E. & Vriend, G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30, 2981–2982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trott, O. & Olson, A. J. Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, J. M., Cieplak, P. & Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000).

    Article  CAS  Google Scholar 

  68. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Jurcik, A. et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34, 3586–3588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Arrington from the Roy J. Carver Biotechnology Center for HR-MS/MS assistance. This work was supported by a grant from the National Institutes of Health (AI144967 to D.A.M. and H.Z.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

H.R. performed bioinformatics analysis, direct cloning, heterologous expression, HR-MS/MS analysis, stereochemistry determination, bioactivity assays, mutational analysis and enzymatic reactions. C.H. performed compound purification, the isotopic feeding study and intermediate characterization. C.H. also designed, performed and analysed NMR experiments. Y.P. assisted in compound purification and genetic manipulation. H.C. performed the AlphaFold2 and AutoDock analysis. D.A.M. contributed to the bioinformatics analysis of lpv genes. S.R.D. performed Marfey’s analysis, reductive desulfurization and interpretation of NMR data to assign stereochemistry with oversight from D.A.M.; M.L. designed and assisted in synthesizing the racemic and (S)-DPD standards. M.G.G. performed and analysed 1H–1H ROESY NMR experiments with oversight from D.A.M.; H.R. and C.H. wrote the paper with editorial oversight from H.Z., along with input from all other authors. H.Z. conceived of and supervised the overall project.

Corresponding author

Correspondence to Huimin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Satoshi Yuzawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–10, Figs. 1–64 and source data of the SDS-PAGE uncropped scans.

Reporting Summary

Source data

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Huang, C., Pan, Y. et al. Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01491-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing