Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective propargylic amination and related tandem sequences to α-tertiary ethynylamines and azacycles

Abstract

Chiral α-tertiary amines and related azacycles are sought-after compounds for drug development. Despite progress in the catalytic asymmetric construction of aza-quaternary stereocentres, enantioselective synthesis of multifunctional α-tertiary amines remains underdeveloped. Enantioenriched α-disubstituted α-ethynylamines are attractive synthons for constructing chiral α-tertiary amines and azacycles, but methods for their catalytic enantioselective synthesis need to be expanded. Here we describe an enantioselective asymmetric Cu(I)-catalysed propargylic amination (ACPA) of simple ketone-derived propargylic carbonates to give both α-dialkylated and α-alkyl–α-aryl α-tertiary ethynylamines. Sterically confined pyridinebisoxazoline (PYBOX) ligands, with a C4 shielding group and relaying groups, play a key role in achieving excellent enantioselectivity. The syntheses of quaternary 2,5-dihydropyrroles, dihydroquinines, dihydrobenzoquinolines and dihydroquinolino[1,2-α]quinolines are reported, and the synthetic value is further demonstrated by the enantioselective catalytic total synthesis of a selective multi-target β-secretase inhibitor. Enantioselective Cu-catalysed propargylic substitutions with O- and C-centred nucleophiles are also realized, further demonstrating the potential of the PYBOX ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiral α-tertiary propargylamines via ACPA.
Fig. 2: Design and application of chiral sterically confined PYBOX ligands.
Fig. 3: Synthetic application.
Fig. 4: Mechanistic studies and further applications.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2212823 (4aa), 2304114 (5e), 2304057 (5l), 2212826 (8h), 2212213 (9a) and 2226279 (22). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Royer, J. Chiral Amine Synthesis: Methods, Developments and Applications (Wiley, 2010).

  2. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Xi, Y.-M., Ma, S.-J. & Hartwig, J. F. Catalytic asymmetric addition of an amine N–H bond across internal alkenes. Nature 588, 254–260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, C.-Y., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hameed, A., Al-Rashida, M. & Shah, M. R. α-Tertiary Amines en Route to Natural Products (Elsevier, 2021).

  7. Hager, A. et al. Synthetic approaches towards alkaloids bearing α-tertiary amines. Nat. Prod. Rep. 33, 491–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Talele, T. T. Opportunities for tapping into three-dimensional chemical space through a quaternary carbon. J. Med. Chem. 63, 13291–13315 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Pronin, S. V., Reiher, C. A. & Shenvi, R. A. Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines. Nature 501, 195–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Shibasaki, M. & Kanai, M. Asymmetric synthesis of tertiary alcohols and α-tertiary amines via Cu-catalyzed C-C bond formation to ketones and ketimines. Chem. Rev. 108, 2853–2873 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Yin, Q., Shi, Y.-J., Wang, J.-X. & Zhang, X.-M. Direct catalytic asymmetric synthesis of α-chiral primary amines. Chem. Soc. Rev. 49, 6141–6153 (2020).

    Article  PubMed  Google Scholar 

  12. Xu, Y.-Z., Wang, J.-J., Deng, G.-J. & Shao, W. Recent advances in the synthesis of chiral α-tertiary amines via transition-metal catalysis. Chem. Commun. 59, 4099–4114 (2023).

    Article  CAS  Google Scholar 

  13. Wu, Y.-W., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature 523, 445–450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, J.-J. et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Ye, C.-X., Shen, X., Chen, S.-M. & Meggers, E. Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids. Nat. Chem. 14, 566–573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, P., Xie, J.-J., Wang, D.-S. & Zhang, X. P. Metalloradical approach for concurrent control in intermolecular radical allylic C−H amination. Nat. Chem. 15, 498–507 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keith, J. M. & Jacobsen, E. N. Asymmetric hydrocyanation of hydrazones catalyzed by lanthanide-PYBOX complexes. Org. Lett. 6, 153–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Detz, R. J., Abiri, Z., Remi, G., Hiemstra, H. & van Maarseveen, J. H. Enantioselective copper-catalysed propargylic substitution: synthetic scope study and application in formal total syntheses of (+)-anisomycin and (−)-cytoxazone. Chem. Eur. J. 17, 5921–5930 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Nishikawa, D., Hirano, K. & Miura, M. Asymmetric synthesis of α‑aminoboronic acid derivatives by copper-catalyzed enantioselective hydroamination. J. Am. Chem. Soc. 137, 15620–15623 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, R.-R. et al. Palladium/l‑proline-catalyzed enantioselective α‑arylative desymmetrization of cyclohexanones. J. Am. Chem. Soc. 138, 5198–5201 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Riart-Ferrer, X. et al. Metalloradical activation of carbonyl azides for enantioselective radical aziridination. Chem 7, 1120–1134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, J.-G. et al. Enantioselective synthesis of pyroglutamic acid esters from glycinate via carbonyl catalysis. Angew. Chem. Int. Ed. 60, 10588–10592 (2021).

    Article  CAS  Google Scholar 

  23. Zhang, Y., Qiao, D.-Y., Duan, M., Wang, Y. & Zhu, S.-L. Enantioselective synthesis of α-aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates. Nat. Commun. 13, 5630–5637 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai, Q.-L. et al. Well-defined chiral dinuclear copper complexes in enantioselective propargylic substitution: for a long-standing supposition on binuclear mechanism. Chem 10, 265–282 (2024).

    Article  CAS  Google Scholar 

  25. Lauder, K., Toscani, A., Scalacci, N. & Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev. 117, 14091–14200 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Rokade, B. V., Barker, J. & Guiry, P. J. Development of and recent advances in asymmetric A3 coupling. Chem. Soc. Rev. 48, 4766–4790 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Zorba, L. P. & Vougioukalakis, G. C. The ketone-amine-alkyne (KA2) coupling reaction: transition metal-catalyzed synthesis of quaternary propargylamines. Coord. Chem. Rev. 429, 213603 (2021).

    Article  CAS  Google Scholar 

  28. Pfeffer, C., Probst, P., Wannenmacher, N., Frey, W. & Peters, R. Direct enantioselective addition of alkynes to imines by a highly efficient palladacycle catalyst. Angew. Chem. Int. Ed. 61, e202206835 (2022).

    Article  CAS  Google Scholar 

  29. Morisaki, K. et al. Mechanistic studies and expansion of the substrate scope of direct enantioselective alkynylation of α-ketiminoesters catalyzed by adaptable (phebox)rhodium(III) complexes. J. Am. Chem. Soc. 138, 6194–6230 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, G.-C., Yang, J. & Zhang, X.-G. Highly enantioselective zinc/BINOL-catalyzed alkynylation of α-ketoimine ester: a new entry to optically active quaternary α-CF3 α-amino acids. Chem. Commun. 47, 5587–5589 (2011).

    Article  CAS  Google Scholar 

  31. Hatano, M., Yamashita, K., Mizuno, M., Ito, O. & Ishihara, K. C-selective and diastereoselective alkyl addition to β,γ-alkynyl-imino esters with zinc(II)ate complexes. Angew. Chem. Int. Ed. 54, 2707–2711 (2015).

    Article  CAS  Google Scholar 

  32. Trost, B. M., Hung, C.-I. & Scharf, M. J. Direct catalytic asymmetric vinylogous additions of α,β- and β,γ-butenolides to polyfluorinated alkynyl ketimines. Angew. Chem. Int. Ed. 57, 11408–11412 (2018).

    Article  CAS  Google Scholar 

  33. Pan, Y.-K. et al. Kinetic resolution of α-tertiary propargylic amines through asymmetric remote aminations of anilines. ACS Catal. 11, 8443–8448 (2021).

    Article  CAS  Google Scholar 

  34. Detz, R. J., Delville, M. M. E., Hiemstra, H. & van Maarseveen, J. H. Enantioselective copper-catalyzed propargylic amination. Angew. Chem. Int. Ed. 47, 3777–3780 (2008).

    Article  CAS  Google Scholar 

  35. Hattori, G., Matsuzawa, H., Miyake, Y. & Nishibayashi, Y. Copper-catalyzed asymmetric propargylic substitution reactions of propargylic acetates with amines. Angew. Chem. Int. Ed. 47, 3781–3783 (2008).

    Article  CAS  Google Scholar 

  36. Miyake, Y., Uemura, S. & Nishibayashi, Y. Catalytic propargylic substitution reactions. ChemCatChem 1, 342–356 (2009).

    Article  CAS  Google Scholar 

  37. Detz, R. J., Hiemstra, H. & van Maarseveen, J. H. Catalyzed propargylic substitution. Eur. J. Org. Chem. 63, 6263–6276 (2009).

    Article  Google Scholar 

  38. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).

    Article  CAS  Google Scholar 

  40. Hattori, G., Yoshida, A., Miyake, Y. & Nishibayashi, Y. Enantioselective ring-opening reactions of racemic ethynyl epoxides via copper-allenylidene intermediates: efficient approach to chiral β-amino alcohols. J. Org. Chem. 74, 7603–7607 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Gómez, J. E., Guo, W.-S., Gaspa, S. & Kleij, A. W. Copper-catalyzed synthesis of γ-amino acids featuring quaternary stereocenters. Angew. Chem. Int. Ed. 56, 15035–15038 (2017).

    Article  Google Scholar 

  42. Tian, L., Gong, L. & Zhang, X. Copper-catalyzed enantioselective synthesis of β-amino alcohols featuring tetrasubstituted tertiary carbons. Adv. Synth. Catal. 360, 2055–2059 (2018).

    Article  CAS  Google Scholar 

  43. Guo, W.-S., Zuo, L.-H., Cui, M.-Y., Yan, B.-W. & Ni, S.-F. Propargylic amination enabled the access to enantioenriched acyclic α-quaternary α-amino ketones. J. Am. Chem. Soc. 143, 7629–7634 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, T., Ni, S.-F. & Guo, W.-S. Practical asymmetric amine nucleophilic approach for the modular construction of protected α-quaternary amino acids. Chem. Sci. 13, 6806–6812 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Royer, J. Asymmetric Synthesis of Nitrogen Heterocycles (Wiley, 2009).

  46. Phillips, A. M. F. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles (Wiley, 2021).

  47. Hattori, G. et al. Copper-catalyzed enantioselective propargylic amination of propargylic esters with amines: copper-allenylidene complexes as key intermediates. J. Am. Chem. Soc. 132, 10592–10608 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Sakata, K. & Nishibayashi, Y. Mechanism and reactivity of catalytic propargylic substitution reactions via metal–allenylidene intermediates: a theoretical perspective. Catal. Sci. Technol. 8, 12–25 (2018).

    Article  CAS  Google Scholar 

  49. Roh, S. W., Choi, K. & Lee, C. Transition metal vinylidene- and allenylidene-mediated catalysis in organic synthesis. Chem. Rev. 119, 4293–4356 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zhu, R.-Y., Chen, L., Hu, X.-S., Zhou, F. & Zhou, J. Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(I)-catalyzed azide-alkyne cycloaddition. Chem. Sci. 11, 97–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Liao, K. et al. Highly enantioselective CuAAC of functional tertiary alcohols featuring an ethynyl group and their kinetic resolution. Angew. Chem. Int. Ed. 60, 8488–8493 (2020).

    Article  Google Scholar 

  52. Gong, Y. et al. Sulfonyl-PYBOX ligands enable kinetic resolution of α-tertiary azides by CuAAC. Angew. Chem. Int. Ed. 62, e202301470 (2023).

    Article  CAS  Google Scholar 

  53. Worrell, B. T., Malik, J. A. & Fokin, V. V. Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science 340, 457–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clayden, J., Lund, A., Vallverdú, L. & Helliwell, M. Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431, 966–971 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Liao, S.-H., Sun, X.-L. & Tang, Y. Side arm strategy for catalyst design: modifying bisoxazolines for remote control of enantioselection and related. Acc. Chem. Res. 47, 2260–2272 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Nishibayashi, Y., Onodera, G., Inada, Y., Hidai, M. & Uemura, S. Synthesis of diruthenium complexes containing chiral thiolate-bridged ligands and their application to catalytic propargylic alkylation of propargylic alcohols with acetone. Organometallics 22, 873–876 (2003).

    Article  CAS  Google Scholar 

  57. Nakajima, K., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. J. Am. Chem. Soc. 137, 2472–2475 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Tsuchida, K., Senda, Y., Nakajima, K. & Nishibayashi, Y. Construction of chiral tri- and tetra-arylmethanes bearing quaternary carbon centers: copper-catalyzed enantioselective propargylation of indoles with propargylic esters. Angew. Chem. Int. Ed. 55, 9728–9732 (2016).

    Article  CAS  Google Scholar 

  59. Zhang, Y.-C., Zhang, B.-W., Geng, R.-L. & Song, J. Enantioselective [3 + 2] cycloaddition reaction of ethynylethylene carbonates with malononitrile enabled by organo/metal cooperative catalysis. Org. Lett. 20, 7907–7911 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Gómez, J. E., Cristòfol, À. & Kleij, A. W. Copper-catalyzed enantioselective construction of tertiary propargylic sulfones. Angew. Chem. Int. Ed. 58, 3903–3907 (2019).

    Article  Google Scholar 

  61. Zhang, Z.-J. et al. N-heterocyclic carbene/copper cooperative catalysis for the asymmetric synthesis of spirooxindoles. Angew. Chem. Int. Ed. 58, 12190–12194 (2019).

    Article  CAS  Google Scholar 

  62. Li, R.-Z., Liu, D.-Q. & Niu, D.-W. Asymmetric O-propargylation of secondary aliphatic alcohols. Nat. Catal. 3, 672–680 (2020).

    Article  CAS  Google Scholar 

  63. Xu, Y.-W., Li, L. & Hu, X.-P. Enantioselective copper-catalyzed [3 + 3] cycloaddition of tertiary propargylic esters with 1H‑pyrazol-5(4H)‑ones toward optically active spirooxindoles. Org. Lett. 22, 9534–9538 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, S.-Y., Tanabe, Y., Kuriyama, S., Sakata, K. & Nishibayashi, Y. Ruthenium-catalyzed enantioselective propargylic phosphinylation of propargylic alcohols with phosphine oxides. Angew. Chem. Int. Ed. 60, 11231–11236 (2021).

    Article  CAS  Google Scholar 

  65. Shen, L., Lin, Z., Guo, B. & Zi, W. Synthesis of cycloheptanoids through catalytic enantioselective (4 + 3)-cycloadditions of 2-aminoallyl cations with dienol silyl ethers. Nat. Synth. 1, 883–891 (2022).

    Article  Google Scholar 

  66. Gong, F. et al. Asymmetric semipinacol rearrangement enabled by copper-catalyzed propargylic alkylation. ACS Catal. 12, 12036–12044 (2022).

    Article  CAS  Google Scholar 

  67. Zhang, Y., Tanabe, Y., Kuriyama, S., Sakata, K. & Nishibayashi, Y. Interplay of diruthenium catalyst in controlling enantioselective propargylic substitution reactions with visible light-generated alkyl radicals. Nat. Commun. 14, 859 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arachchi, M. K., Schaugaard, R. N., Schlegel, H. B. & Nguyen, H. M. Scope and mechanistic probe into asymmetric synthesis of α‑trisubstituted-α-tertiary amines by rhodium catalysis. J. Am. Chem. Soc. 145, 19642–19654 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nguyen, A. T. & Kim, H. K. Recent advances in synthetic routes to azacycles. Molecules 28, 2737–2781 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, J. Multicatalyst System in Asymmetric Catalysis (Wiley, 2014).

  71. Lu, L.-Q., Chen, J.-R. & Xiao, W.-J. Development of cascade reactions for the concise construction of diverse heterocyclic architectures. Acc. Chem. Res. 45, 1278–1293 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Sánchez-Roselló, M., Aceña, J. L., Simón-Fuentesa, A. & del Pozo, C. A general overview of the organocatalytic intramolecular aza-Michael reaction. Chem. Soc. Rev. 43, 7430–7453 (2014).

    Article  PubMed  Google Scholar 

  73. Wink, M. Quinolizidine alkaloids: biochemistry, metabolism and function in plants and cell suspension cultures. Planta Med. 53, 509–514 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Edwards, P. D. et al. Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity and high ligand efficiency. J. Med. Chem. 50, 5912–5925 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Sakata, K., Goto, Y., Yoshikawa, T. & Nishibayashi, Y. Enantioselectivity in ruthenium-catalyzed propargylic substitution reactions of propargylic alcohols with acetone: a DFT study. Chem. Asian J. 16, 3760–3766 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Sakata, K., Uehara, Y., Kohara, S., Yoshikawa, T. & Nishibayashi, Y. Effect of propargylic substituents on enantioselectivity and reactivity in ruthenium-catalyzed propargylic substitution reactions: a DFT study. ACS Omega 7, 36634–36642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the NSFC (21725203 and 21971067, J.Z.; 21871090, F.Z.), the Shanghai Science and Technology Innovation Action Plan (no. 20JC1416900, J.Z.), the Innovation Program of Shanghai Municipal Education Commission (2023ZKZD37, J.Z.) and the Fundamental Research Funds for the Central Universities. Li-Xin Dai on the occasion of his 100th birthday.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and F.Z. conceived the idea. Z.Z. performed the experiments. Z.Z., Y.S. and H.L. collected and analysed the data. Z.Z., Y.S., Y.G., D.-L.T., H.L. and Z.-P.Z. prepared the starting materials. X.W. performed the DFT calculation studies. F.Z. and J.Z. directed the project and co-wrote the manuscript.

Corresponding authors

Correspondence to Feng Zhou, Xin Wang or Jian Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Qin Yin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Less successful examples of challenging substrates.

Despite the broad substrate scope shown in Table 1, there still had some challenging substrates unable to afford the desired amines in satisfactory enantiomeric excess, including carbonates derived from ketones with lesser steric dissimilarities between two substituents, primary amines such as cyclohexyl amine, and acyclic secondary amines such as N-methylaniline. However, the use of our sterically confined PYBOX ligands could still afford obviously better enantioselectivity (for details, see Section 5.3 in SI). Condition A: α-alkyl ester 1 (0.05 mmol), amine 3 (0.06 mmol), CuBr2 (10 mol%), L (12 mol%), N,N-dimethylpiperazine (0.2 mmol) in n-PrOH (0.5 mL) at –20 °C for 2.5 days. Condition B: α-aryl ester 2 (0.05 mmol), amine 3 (0.06 mmol), CuCl2·2H2O (10 mol%), L15 (12 mol%), N-methylpiperidine (0.2 mmol) in MeOH (0.5 mL) at –20 °C for 2.5 days. Yield was determined by 1H NMR with 1,3,5-trimethoxybenzene as internal standard. The e.e. values were determined by chiral HPLC. aAt 0 °C. bRun for 5 days.

Supplementary information

Supplementary Information

Supplementary Tables 1–18, Figs. 1–8, Chiral ligand and starting material preparation, Experimental procedures, Synthetic transformations, Mechanistic studies and Product characterization.

Supplementary Data 1

Crystallographic data for compound 4aa; CCDC reference 2212823.

Supplementary Data 2

Crystallographic data for compound 5e; CCDC reference 2304114.

Supplementary Data 3

Crystallographic data for compound 5l; CCDC reference 2304057.

Supplementary Data 4

Crystallographic data for compound 8h; CCDC reference 2212826.

Supplementary Data 5

Crystallographic data for compound 9a; CCDC reference 2212213.

Supplementary Data 6

Crystallographic data for compound 22; CCDC reference 2226279.

Supplementary Data 7

Computational details and Cartesian coordinates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Sun, Y., Gong, Y. et al. Enantioselective propargylic amination and related tandem sequences to α-tertiary ethynylamines and azacycles. Nat. Chem. 16, 521–532 (2024). https://doi.org/10.1038/s41557-024-01479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01479-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing