Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determinants that enable disordered protein assembly into discrete condensed phases

Abstract

Cells harbour numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein- and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids, resulting in demixing via liquid–liquid phase separation. Proteins harbouring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modelling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of disordered proteins that form discrete condensed phases in living cells and when biochemically reconstituted in vitro.
Fig. 2: Amino-acid sequence determinants of FUS LC coacervation specificity.
Fig. 3: Minimalistic polymer model uncovers co-phase separation rules.
Fig. 4: Polypeptide chain properties governing FUS LC partitioning and LLPS.
Fig. 5: Rules for LLPS specificity are applicable broadly, in multiple biochemical and biological contexts.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and Supplementary Information. Raw images are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes to generate initial structures and perform simulations are available at Bitbucket (https://bitbucket.org/kandarpsojitra/simulation-codes/src/master/). Scripts used to generate the macros used for analysis in ImageJ are available upon request. For data analysis and plotting, NumPy, SciPy, Seaborn and Matplotlib Python packages were used.

References

  1. Good, M. C., Zalatan, J. G. & Lim, W. A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schuster, B. S. et al. Biomolecular condensates: sequence determinants of phase separation, microstructural organization, enzymatic activity and material properties. J. Phys. Chem. B 125, 3441–3451 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tibble, R. W., Depaix, A., Kowalska, J., Jemielity, J. & Gross, J. D. Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation. Nat. Chem. Biol. 17, 615–623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lange, A. et al. Classical nuclear localization signals: definition, function and interaction with importin α. J. Biol. Chem. 282, 5101–5105 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Walter, P. & Johnson, A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, 6357 (2017).

    Article  Google Scholar 

  9. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Hyman, A. A., Weber, C. A. & Julicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sanders, D. W. et al. Competing Protein-RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Kaur, T. et al. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat. Commun. 12, 872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Regy, R. M., Dignon, G. L., Zheng, W., Kim, Y. C. & Mittal, J. Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations. Nucleic Acids Res. 48, 12593–12603 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rekhi, S. et al. Expanding the molecular language of protein liquid-liquid phase separation. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2023.03.02.530853v1 (2023).

  24. Espinosa, J. R. et al. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proc. Natl Acad. Sci. USA 117, 13238–13247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davis, R. B., Kaur, T., Moosa, M. M. & Banerjee, P. R. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci. 30, 1454–1466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Elbaum-Garfinkle, S. & Brangwynne, C. P. Liquids, fibers and gels: the many phases of neurodegeneration. Dev. Cell 35, 531–532 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, A. P. et al. The living interface between synthetic biology and biomaterial design. Nat. Mater. 21, 390–397 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, Z. et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 9, e1000614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Outeiro, T. F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    Article  PubMed  Google Scholar 

  33. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Das, S., Lin, Y. H., Vernon, R. M., Forman-Kay, J. D. & Chan, H. S. Comparative roles of charge, π and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 117, 28795–28805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murthy, A. C. et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murthy, A. C. et al. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat. Struct. Mol. Biol. 28, 923–935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryan, V. H. et al. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO J. 40, e105001 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, H. X. & Pang, X. Electrostatic interactions in protein structure, folding, binding and condensation. Chem. Rev. 118, 1691–1741 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghosh, K., Huihui, J., Phillips, M. & Haider, A. Rules of physical mathematics govern intrinsically disordered proteins. Annu. Rev. Biophys. 51, 355–376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cuylen-Haering, S. et al. Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly. Nature 587, 285–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amin, A. N., Lin, Y. H., Das, S. & Chan, H. S. Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins. J. Phys. Chem. B 124, 6709–6720 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  50. Rekhi, S. et al. Role of strong localized vs weak distributed interactions in disordered protein phase separation. J. Phys. Chem. 127, 3829–3838 (2023).

    Article  CAS  Google Scholar 

  51. Devarajan, D. S. et al. Effect of charge distribution on the dynamics of polyampholytic disordered proteins. Macromolecules 55, 8987–8997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kelley, F. M., Favetta, B., Regy, R. M., Mittal, J. & Schuster, B. S. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants. Proc. Natl Acad. Sci. USA 118, e2109967118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weiner, B. G., Pyo, A. G. T., Meir, Y. & Wingreen, N. S. Motif-pattern dependence of biomolecular phase separation driven by specific interactions. PLoS Comput. Biol. 17, e1009748 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, J., Devarajan, D. S., Nikoubashman, A. & Mittal, J. Conformational properties of polymers at droplet interfaces as model systems for disordered proteins. ACS Macro Lett. 12, 1472–1478 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, B., Zheng, C., Sims, M. B., Bates, F. S. & Lodge, T. P. Influence of charge fraction on the phase behavior of symmetric single-ion conducting diblock copolymers. ACS Macro Lett. 10, 1035–1040 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Schmit, J. D., Bouchard, J. J., Martin, E. W. & Mittag, T. Protein network structure enables switching between liquid and gel states. J. Am. Chem. Soc. 142, 874–883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghosh, K. Stoichiometric versus stochastic interaction in models of liquid-liquid phase separation. Biophys. J. 121, 4–6 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, Y.-H., Wu, H., Jia, B., Zhang, M. & Chan, H. S. Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding. Biophys. J. 121, 157–171 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Y., Xu, B., Weiner, B. G., Meir, Y. & Wingreen, N. S. Decoding the physical principles of two-component biomolecular phase separation. eLife 10, e62403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Regy, R., Zheng, W. & Mittal, J. Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation. Methods Enzymol. 646, 1–17 (2021).

    Article  CAS  Google Scholar 

  61. Fox, J. M., Zhao, M., Fink, M. J., Kang, K. & Whitesides, G. M. The molecular origin of enthalpy/entropy compensation in biomolecular recognition. Annu. Rev. Biophys. 47, 223–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Long, M. S., Jones, C. D., Helfrich, M. R., Mangeney-Slavin, L. K. & Keating, C. D. Dynamic microcompartmentation in synthetic cells. Proc. Natl Acad. Sci. USA 102, 5920–5925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lau, H. K. et al. Microstructured elastomer‐PEG hydrogels via kinetic capture of aqueous liquid-liquid phase separation. Adv. Sci. 5, 1701010 (2018).

    Article  Google Scholar 

  64. Erkamp, N. A. et al. Adsorption of RNA to interfaces of biomolecular condensates enables wetting transitions. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2023.01.12.523837v1 (2023).

  65. Zhang, Y. et al. Interface resistance of biomolecular condensates. eLife 12, RP91680 (2023).

    Google Scholar 

  66. Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Devarajan, D. S., Wang, J., Nikoubashman, A., Kim, Y. C. & Mittal, J. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2023.05.09.540038v2 (2023).

  68. Rana, U., Brangwynne, C. P. & Panagiotopoulos, A. Z. Phase separation vs aggregation behavior for model disordered proteins. J. Chem. Phys. 155, 125101 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Mohanty, P. et al. Principles governing the phase separation of multidomain proteins. Biochemistry 61, 2443–2455 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Phan, T. M., Kim, Y. C., Debelouchina, G. T. & Mittal, J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. eLife 12, RP90820 (2023).

    Google Scholar 

  71. Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chew, P. Y., Joseph, J. A., Collepardo-Guevara, R. & Reinhardt, A. Thermodynamic origins of two-component multiphase condensates of proteins. Chem. Sci. 14, 1820–1836 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schuster, B. S. et al. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun. 9, 2985 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Garabedian, M. V. et al. Designer membraneless organelles sequester native factors for control of cell behavior. Nat. Chem. Biol. 17, 998–1007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  76. Guthrie, C. & Fink, G. Guide to yeast genetics and molecular biology. Methods Enzymol. 194, 1–863 (1991).

    Google Scholar 

  77. Ashbaugh, H. S. & Hatch, H. W. Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space. J. Am. Chem. Soc. 130, 9536–9542 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the E. Bi (University of Pennsylvania, Department of Cell and Developmental Biology) and J. Shorter (University of Pennsylvania, Department of Biochemistry and Biophysics) laboratories for sharing yeast strains and plasmids, A. Stout and the Penn CDB Microscopy Core for imaging and support. This study was supported by National Institute of Health grants, including National Institute of Biomedical Imaging and Bioengineering grant EB028320 (M.C.G.) and NIGMS R01GM136917 (J.M.). Additionally, the work was partly funded by a National Science Foundation (NSF) MRSEC Seed grant no. DMR1720530 (M.C.G.) and Welch Foundation grant A-2113-20220331 (J.M.). Work by M.C.G., D.A.H. and M.G. supported in part by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0007063 (M.C.G.). We gratefully acknowledge the computational resources provided by the Texas A&M High Performance Research Computing (HPRC).

Author information

Authors and Affiliations

Authors

Contributions

M.C.G. and J.M. conceptualized the project. M.C.G., R.M.W. and M.V.G. designed the experiments. E.G. performed initial IDP cloning and strain generation for yeast co-expression screening. B.X. generated clones and strains for the initial characterization of FUS LC multimers. R.M.W. performed cloning, strain generation and imaging for all yeast experiments following initial screenings, including FUS LC mutagenesis. K.A.S. designed predicted FUS LC mutants. M.V.G. purified recombinant FUS LC and mutants and performed in vitro characterization of LLPS. K.A.S. generated the minimalistic polymer model for two-component phase separation, aided by R.M.R. R.M.W. and M.V.G. analysed the experimental data. W.W. transduced HEK293T cells and imaged the constructs. M.G. and M.V.G. purified recombinant (FUS LC)2-BFP. M.C.G., R.M.W., K.A.S., M.V.G. and J.M. wrote the manuscript.

Corresponding authors

Correspondence to Jeetain Mittal or Matthew C. Good.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Allie Obermeyer, Jeremy Schmidt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Specificity of mixing among screened IDRs and orthogonality of LAF-1 RGG and FUS LC.

a. Quantitation of IDP enrichment in LAF-1 RGG condensates from IDP co-expression screening in yeast; images from Fig. 1b. EI values for 3 IDPs in (LAF-1 RGG)2-mScarlet condensates. N of condensates: α-syn, 35; TDP-43, 39; FUS FL, 31. P values: α-syn versus TDP-43, 1.7 × 10−2; α-syn versus FUS FL, 1.9 × 10−12; TDP-43 versus FUS FL, 2.9 × 10−7). b. Plot showing possible range of enrichment indices in LAF-1 RGG condensates. Minimum value of 1. Maximum value based on LAF-1 RGG mScarlet (client) co-partitioning to (LAF-1 RGG)2-GFP condensates. N of condensates: RGG-mS, 91; FUS LC wt, 148; (FUS LC wt)3, 37. 10 RGG-mS points >10 not shown on plot. c. Schematic of CG slab at 300 K consisting of FUS LC (green) and LAF-1 RGG (magenta). Distinct phases are observed with FUS LC forming a condensed phase and LAF-1 RGG sticking at its interface. Data are presented as mean +/− 95% CI. Significance was calculated by one-way analysis of variance (ANOVA); ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, and **** P ≤ 0.0001. Data relevant to Fig. 1.

Source data

Extended Data Fig. 2 Additional images, controls, and biochemical reconstitution for FUS LC mutants.

a. Non-mixing behavior of FUS LC wildtype persists in mutants Charge+16 and Charge+32 when adding balanced charge. b. Average numbers of (LAF-1 RGG)2-GFP condensates in co-expressing FUS LC mutant strains are within twofold of (LAF-1 RGG)2 and FUS LC wildtype strain. Light blue box indicates range within twofold of wildtype. n ≥ 30 cells per column noted below column mean. c. Expression of FUS LC mutant constructs within co-expressed strains, normalized to FUS LC wildtype expression on day of imaging. Light magenta box indicates range within twofold of wildtype. n = 30 cells per column. Data are presented as mean +/− 95% CI. Significance was calculated by one-way analysis of variance (ANOVA); ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, and **** P ≤ 0.0001. Scale bar: 5 μm. Data relevant to Fig. 2. d. Partitioning of GFP-tagged (LAF-1 RGG)2 to FUS LC wildtype and condensates in vitro. e. Quantitation of enrichment of (LAF-1 RGG)2-GFP in condensed phase versus continuous phase from images in (D) 10 minutes after addition of (LAF-1 RGG)2-GFP mutants to pre-formed FUS LC condensates (50 μM of each FUS LC construct). n = 20 condensates per column. P values: wt versus Charge+32.seg, 1.1 × 10−11; wt versus Charge+42.seg, 1.1 × 10−11; Charge+32.seg versus Charge+42.seg, 1.1 × 10−11. f. Brightfield images of wells containing various concentrations of FUS LC mutants, showing their phase boundaries. Estimated Csat (right). g. Turbidity assays of FUS LC mutants (mean values from n = 4 independent trials) showing increased transition temperatures compared to wildtype. Data are presented as mean +/− 95% CI. Significance was calculated by one-way analysis of variance (ANOVA); ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, and **** P ≤ 0.0001. Scale bar: 10 μm. Data relevant to Fig. 2.

Source data

Extended Data Fig. 3 Additional information from polymer model simulations.

a. Density profiles of polymer B and EI plot for λAB = λBB case. b. Colormap of EI from CG scanning simulation with varying λAB and λBB. c. Plot showing variation of EI as a function of λAB at λBB = 0 highlights the complex coacervate case. d. Plot showing variation of EI as a function of λBBAB at different constant λAB values. Maximum enrichment is observed when ratio of λBBAB is close to 1. e. Density profiles of polymer A and B corresponding to the simulation representations in Fig. 3e. f. Density profile from single component CG slab for varying interaction strength. For interaction strength for 0.75 or above, chains start to condense. g. Simultaneous changes in homotypic and heterotypic interaction parameters can yield experimentally observed plateauing in EI. Plot shows variation of EI (right) along an arbitrarily defined change in λAB and λBB values (blue line shown in heat map (left)). Right plot shows plateauing of EI with increasing λBB (bottom x-axis) and λAB (upper x-axis). For +20Tyr and +30Tyr, increasing tyrosine will increase both homotypic and heterotypic interactions and scanning simulation shows one can obtain similar EI values as the FUS LC wildtype. For clarity, we only show one representative combination of λAB and λBB, but there are several other possible combinations that can yield similar EI values as the FUS LC wildtype. Data relevant to Fig. 3.

Source data

Extended Data Fig. 4 Results from simulations varying polymer lengths.

Variation of EI with B’s homotypic interaction at 0.80 heterotypic interaction. At low heterotypic interaction (≤0.80) longer chain-length do not enhance co-partitioning. Data relevant to Fig. 4.

Source data

Extended Data Fig. 5 Additional images relevant to LLPS specificity and formation of orthogonal condensates in vitro and in mammalian cells.

a. Biochemical reconstitution in vitro using purified proteins at concentrations above their Csat, to generate droplets. (LAF-1 RGG)2-GFP strongly co-partitions with FUS LC Charge+32.seg condensates; (FUS LC)2-BFP tracer; ‘merge’ in white shows overlay. Scale bar: 5 μm. b. Loss of LLPS specificity for FUS LC mutant Charge+32.seg in HEK293T cells co-transfected with (LAF-1 RGG)2-GFP; (FUS LC Charge+32.seg)2-mCherry strongly co-partitions with (LAF-1 RGG)2-GFP condensates. Scale bar: 10 μm. c. FRAP plots from condensates of FUS LC constructs when expressed as multimers. Left: Triple version of FUS LC wildtype. Middle: Tandem version of Charge+32.seg. Right: Tandem version of Charge+42.seg. Plots are presented as mean +/− 95% CI. Samples sizes are shown on each plot. Data relevant to Fig. 5.

Source data

Extended Data Table 1 Enrichment indices of FUS LC clients using mean client values

Supplementary information

Supplementary Information

Supplementary Text 1, Fig. 1 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Source data for panels c and f.

Source Data Fig. 2

Source data for column plots in panels b, d, f, g, h, i, j, k and l.

Source Data Fig. 3

Source data for simulations in all panels.

Source Data Fig. 4

Source data for column plots and simulations in panels b, d, f, and g.

Source Data Fig. 5

Source data for column plots in panels c and e.

Source Data Extended Data Fig. 1

Source data for all panels.

Source Data Extended Data Fig. 2

Source data for column plots in panels b, c, and e and turbidity assays in panel g.

Source Data Extended Data Fig. 3

Source data for panels a, c, e, f, and g.

Source Data Extended Data Fig. 4

Source data for plot.

Source Data Extended Data Fig. 5

Source data for FRAP plots in panel c.

Source Data Extended Data Table 1

Source data for table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welles, R.M., Sojitra, K.A., Garabedian, M.V. et al. Determinants that enable disordered protein assembly into discrete condensed phases. Nat. Chem. (2024). https://doi.org/10.1038/s41557-023-01423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-023-01423-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing