Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural characterization and reactivity of a room-temperature-stable, antiaromatic cyclopentadienyl cation salt

Abstract

The singlet states of cyclopentadienyl (Cp) cations are considered as true prototypes of an antiaromatic system. Unfortunately, their high intrinsic reactivity inhibited their isolation in the solid state as a salt, and controlled reactions are also scarce. Here we present the synthesis and solid state structure of the room-temperature-stable Cp cation salt [Cp(C6F5)5]+[Sb3F16]. Although the aromatic triplet state of the [Cp(C6F5)5]+ cation is energetically favoured in the gas phase according to quantum chemical calculations, coordination of the cation by either [Sb3F16] or C6F6 in the crystal lattice stabilizes the antiaromatic singlet state, which is present in the solid state. The calculated hydride and fluoride ion affinities of the [Cp(C6F5)5]+ cation are higher than those of the perfluorinated tritylium cation [C(C6F5)3]+. Reactions of [Cp(C6F5)5]+[Sb3F16] with CO, which probably yields the corresponding carbonyl complex, and of radical Cp(C6F5)5∙ with selected model substrates (Cp2Fe, (Ph3C∙)2 and Cp*Al) are also presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Literature reports of cyclopentadienyl cations, synthesis of cation 1, radical 2 and their precursors A–D, and molecular structures of two different solvates of the Cp cation 1 (sc-XRD).
Fig. 2: Paramagnetic susceptibility data for 1a+[Sb3F16]·1.5C6F6 and possible electronic states for a Cp cation.
Fig. 3: Reactions of 1+[Sb3F16] and 2.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files). The structures of B, C6(C6F5)6, 1a+, 1b+, 2ab, 3a‒c, 5 and 6 in the solid state were determined by single-crystal X-ray diffraction and the crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) with identifiers 2246848 (1a+), 2246849 (1b+), 2246850 (2a), 2246851 (2b), 2246852 (3a), 2246853 (3b), 2246854 (3c), 2246857 (5), 2246858 (6), 2246859 (B) and 2246860 (C6(C6F5)6). Copies of the data can be obtained free of charge on application to the CCDC.

Code availability

DFT and double-hybrid DFT methods, as implemented in the quantum chemistry program packages Gaussian1676, Amsterdam Density Functional (ADF)77 and Orca 5.0.078, were used to calculate molecular geometries, orbital energies, charges, natural bond orbitals and NICS values. All data generated or analysed are included in the Supplementary Information file.

References

  1. Faraday, M. XX. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Phil. Trans. R. Soc. 115, 440–466 (1825).

    Article  Google Scholar 

  2. Kaiser, R. ‘Bicarburet of hydrogen’. Reappraisal of the discovery of benzene in 1825 with the analytical methods of 1968. Angew. Chem. Int. Ed. Engl. 7, 345–350 (1968).

    Article  CAS  Google Scholar 

  3. Kekulé, A. Ueber die s.g. gepaarten Verbindungen und die Theorie der mehratomigen Radicale. Justus Liebigs Ann. Chem. 104, 129–150 (1857).

    Article  Google Scholar 

  4. Kekulé, A. Ueber die constitution und die metamorphosen der chemischen verbindungen und über die chemische natur des kohlenstoffs. Justus Liebigs Ann. Chem. 106, 129–159 (1858).

    Article  Google Scholar 

  5. Schultz, G. Feier der deutschen chemischen gesellschaft zu ehren August Kekulé’s. Ber. Dtsch. Chem. Ges. 23, 1265–1312 (1890).

    Article  Google Scholar 

  6. Willstätter, R. & Waser, E. Über cyclooctatetraen. Ber. Dtsch. Chem. Ges. 44, 3423–3445 (1911).

    Article  Google Scholar 

  7. Balaban, A. T., Schleyer, P. V. R. & Rzepa, H. S. Crocker, not Armit and Robinson, begat the six aromatic electrons. Chem. Rev. 105, 3436–3447 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Hückel, E. Quantentheoretische beiträge zum benzolproblem. Z. Physik 70, 204–286 (1931).

    Article  Google Scholar 

  9. Breslow, R. & Yuan, C. The sym-triphenylcyclopropenyl cation, a novel aromatic system. J. Am. Chem. Soc. 80, 5991–5994 (1958).

    Article  CAS  Google Scholar 

  10. Breslow, R., Groves, J. T. & Ryan, G. Cyclopropenyl cation. J. Am. Chem. Soc. 89, 5048 (1967).

    Article  CAS  Google Scholar 

  11. Katz, T. J. The cycloöctatetraenyl dianion. J. Am. Chem. Soc. 82, 3784–3785 (1960).

    Article  CAS  Google Scholar 

  12. Breslow, R. Novel aromatic and antiaromatic systems. Chem. Rec. 14, 1174–1182 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Kass, S. R. Cyclopropenyl anion: an energetically nonaromatic ion. J. Org. Chem. 78, 7370–7372 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J. I. C., Mo, Y., Evangelista, F. A. & von Ragué Schleyer, P. Is cyclobutadiene really highly destabilized by antiaromaticity? Chem. Commun. (Camb.) 48, 8437–8439 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Breslow, R. & Hoffman, J. M. Antiaromaticity in the parent cyclopentadienyl cation. Reaction of 5-iodocyclopentadiene with silver ion. J. Am. Chem. Soc. 94, 2110–2111 (1972).

    Article  CAS  Google Scholar 

  16. Saunders, M. et al. Unsubstituted cyclopentadienyl cation, a ground-state triplet. J. Am. Chem. Soc. 95, 3017–3018 (1973).

    Article  CAS  Google Scholar 

  17. Breslow, R., Hill, R. & Wasserman, E. Pentachlorocyclopentadienyl cation, a ground-state triplet. J. Am. Chem. Soc. 86, 5349–5350 (1964).

    Article  CAS  Google Scholar 

  18. Vančik, H., Novak, I. & Kidemet, D. IR matrix spectroscopy of pentachlorocyclopentadienyl cation C5Cl5+. Effect of chlorine as a substituent. J. Phys. Chem. A 101, 1523–1525 (1997).

    Article  Google Scholar 

  19. Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3.pi.pi.* state of cyclic hydrocarbons. J. Am. Chem. Soc. 94, 4941–4948 (1972).

    Article  CAS  Google Scholar 

  20. Karas, L. J. & Wu, J. I. Baird’s rules at the tipping point. Nat. Chem. 14, 723–725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yager, W. A. A stable triplet state of pentaphenylcyclopentadienyl cation. J. Am. Chem. Soc. 85, 2033–2034 (1963).

    Article  Google Scholar 

  22. Breslow, R., Chang, H. W., Hill, R. & Wasserman, E. Stable triplet states of some cyclopentadienyl cations. J. Am. Chem. Soc. 89, 1112–1119 (1967).

    Article  CAS  Google Scholar 

  23. Broser, W., Siegle, P. & Kurreck, H. Über substituierte Pentaphenylcyclopentadienyl-Verbindungen und Tetracyclone, IV Unsymmetrisch p-methyl- und p-phenyl-substituierte Pentaphenylcyclopentadienyl-Kationen und -Radikale. Chem. Ber. 101, 69–83 (1968).

    Article  CAS  Google Scholar 

  24. Broser, W., Kurreck, H. & Siegle, P. Über substituierte pentaphenylcyclopentadienyl-verbindungen und tetracyclone, III. Symmetrische cyclopentadienyl-kationen mit nachweisbaren triplettzuständen. Chem. Ber. 100, 788–794 (1967).

    Article  CAS  Google Scholar 

  25. Breslow, R. & Mazur, S. Electrochemical determination of pKR+ for some antiaromatic cyclopentadienyl cations. J. Am. Chem. Soc. 95, 584–585 (1973).

    Article  CAS  Google Scholar 

  26. Breslow, R. Quantitative studies on aromaticity and antiaromaticity. Pure Appl. Chem. 28, 111–130 (1971).

    Article  CAS  Google Scholar 

  27. Lossing, F. P. & Traeger, J. C. Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations. J. Am. Chem. Soc. 97, 1579–1580 (1975).

    Article  CAS  Google Scholar 

  28. Gompper, R. & Glöckner, H. Stable cyclopentadienylium salts. Angew. Chem. Int. Ed. Engl. 23, 53–54 (1984).

    Article  Google Scholar 

  29. Lambert, J. B., Lin, L. & Rassolov, V. The stable pentamethylcyclopentadienyl cation. Angew. Chem. Int. Ed. Engl. 41, 1429–1431 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Otto, M. et al. The stable pentamethylcyclopentadienyl cation remains unknown. Angew. Chem. Int. Ed. Engl. 41, 2275–2276 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Jones, J. N., Cowley, A. H. & Macdonald, C. L. B. The crystal structure of the ‘pentamethylcyclopentadienyl cation’ is that of the pentamethylcyclopentenyl cation. Chem. Commun. (Camb.) 2002, 1520–1521 (2002).

    Article  Google Scholar 

  32. Müller, T. Comment on the X-ray structure of pentamethylcyclopentadienyl cation. Angew. Chem. Int. Ed. Engl. 41, 2276–2278 (2002).

    Article  PubMed  Google Scholar 

  33. Lambert, J. B. Statement. Angew. Chem. Int. Ed. Engl. 41, 2278 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Breslow, R. & Chang, H. W. The rearrangement of the pentaphenylcyclopentadienyl cation. J. Am. Chem. Soc. 83, 3727–3728 (1961).

    Article  CAS  Google Scholar 

  35. Rupf, S. M., Pröhm, P. & Malischewski, M. The 2+2 cycloaddition product of perhalogenated cyclopentadienyl cations: structural characterization of salts of the C10Cl102+ and C10Br102+ dications. Chem. Commun. (Camb.) 56, 9834–9837 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Jutzi, P. & Mix, A. Synthesen mit dem reagenz pentamethylcyclopentadienylbromid/silbertetrafluoroborat: das pentamethylcyclopentadienyl‐kation als reaktive zwischenstufe. Chem. Ber. 125, 951–954 (1992).

    Article  CAS  Google Scholar 

  37. Costa, P., Trosien, I., Mieres-Perez, J. & Sander, W. Isolation of an antiaromatic singlet cyclopentadienyl zwitterion. J. Am. Chem. Soc. 139, 13024–13030 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Iversen, K. J., Wilson, D. J. D. & Dutton, J. L. A computational study on a strategy for isolating a stable cyclopentadienyl cation. Chem. Eur. J. 20, 14132–14138 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Fan, C., Piers, W. E. & Parvez, M. Perfluoropentaphenylborole. Angew. Chem. Int. Ed. Engl. 48, 2955–2958 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Webb, A. F. & Gilman, H. Reactions of some perhaloarenes with metals and metal halides. J. Organomet. Chem. 20, 281–283 (1969).

    Article  CAS  Google Scholar 

  41. Cairncross, A., Sheppard, W. A. & Wonchoba, E. Pentafluorophenylcopper tetramer, a reagent for synthesis of fluorinated aromatic compounds. Org. Synth. 59, 122–128 (1979).

    Article  Google Scholar 

  42. Birchall, J. M., Bowden, F. L., Haszeldine, R. N. & Lever, A. B. P. Polyfluoroarenes. Part IX. Decafluorotolan: synthesis, properties, and use as an organometallic ligand. J. Chem. Soc. A 747–753 (1967).

  43. Hoffmann, K. F. et al. The tris(pentafluorophenyl)methylium cation: isolation and reactivity. Angew. Chem. Int. Ed. Engl. 61, e202203777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).

    Article  CAS  Google Scholar 

  45. Van Vleck, J. H. The theory of electric and magnetic susceptibilities. Nature 130, 490–491 (1932).

    Article  Google Scholar 

  46. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  47. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  48. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article  CAS  Google Scholar 

  49. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  50. Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).

    Article  PubMed  Google Scholar 

  51. van Lenthe, E. & Baerends, E. J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 24, 1142–1156 (2003).

    Article  PubMed  Google Scholar 

  52. Riplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013).

    Article  PubMed  Google Scholar 

  53. Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).

    Article  PubMed  Google Scholar 

  54. Riplinger, C., Pinski, P., Becker, U., Valeev, E. F. & Neese, F. Sparse maps–A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 144, 024109 (2016).

    Article  PubMed  Google Scholar 

  55. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Gleiter, R. & Haberhauer, G. Aromaticity and Other Conjugation Effects (Wiley-VCH, 2012).

  57. Julg, A. & Franois, P. Recherches sur la géométrie de quelques hydrocarbures non-alternants: son influence sur les énergies de transition, une nouvelle définition de l’aromaticité. Theoret. Chim. Acta 8, 249–259 (1967).

    Article  CAS  Google Scholar 

  58. Krygowski, T. M. & Cyrański, M. Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron 52, 1713–1722 (1996).

    Article  CAS  Google Scholar 

  59. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Erdmann, P., Leitner, J., Schwarz, J. & Greb, L. An extensive set of accurate fluoride ion affinities for p-block element Lewis acids and basic design principles for strong fluoride ion acceptors. Chemphyschem 21, 987–994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fukazawa, A. et al. Reaction of pentaarylboroles with carbon monoxide: an isolable organoboron carbonyl complex. Chem. Sci. 3, 1814–1818 (2012).

    Article  CAS  Google Scholar 

  62. Richardson, C. & Reed, C. A. Exploration of the pentacyano-cyclo-pentadienide ion, C5(CN)5, as a weakly coordinating anion and potential superacid conjugate base. Silylation and protonation. Chem. Commun. 706–707 (2004).

  63. Sievers, R., Sellin, M., Rupf, S. M., Parche, J. & Malischewski, M. Introducing the perfluorinated Cp* ligand into coordination chemistry. Angew. Chem. Int. Ed. Engl. 61, e202211147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laganis, E. D. & Lemal, D. M. 5H-(Perfluoropentamethyl)cyclopentadiene, an extraordinary carbon acid. J. Am. Chem. Soc. 102, 6633–6634 (1980).

    Article  CAS  Google Scholar 

  65. Riddlestone, I. M., Kraft, A., Schaefer, J. & Krossing, I. Taming the cationic beast: novel developments in the synthesis and application of weakly coordinating anions. Angew. Chem. Int. Ed. Engl. 57, 13982–14024 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Goldberg, R. N., Kishore, N. & Lennen, R. M. Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31, 231–370 (2002).

    Article  CAS  Google Scholar 

  67. Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Schorpp, M. et al. Synthesis and application of a perfluorinated ammoniumyl radical cation as a very strong deelectronator. Angew. Chem. Int. Ed. Engl. 59, 9453–9459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sievers, R., Parche, J., Kub, N. G. & Malischewski, M. Synthesis and coordination chemistry of fluorinated cyclopentadienyl ligands. Synlett 34, 1079–1086 (2023).

    Article  CAS  Google Scholar 

  70. Boeré, R. T. et al. Oxidation of closo-B12Cl12- to the radical anion B12Cl12*- and to neutral B12Cl12. Angew. Chem. Int. Ed. Engl. 50, 549–552 (2011).

    Article  PubMed  Google Scholar 

  71. Origin(Pro) v.2016 (OriginLab Corporation, 2016).

  72. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magnet. Res. 178, 42–55 (2006).

    Article  CAS  Google Scholar 

  73. Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A 46, 467–473 (1990).

    Article  Google Scholar 

  74. Sheldrick, G. M. SHELXL-2017, Program for the Refinement of Crystal Structures. University of Göttingen, Göttingen (Germany) (2017).

  75. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Frisch, M. J. et al. Gaussian 16, Revision A.03. (2016)

  77. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  78. Neese, F. Software update: The ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG, grant INST 20876/282-1 FUGG) and the University of Duisburg-Essen. We thank B. Geoghegan and G.E. Cutsail III (MPI CEC, Mülheim an der Ruhr, Germany) for EPR measurements, M. Weinert for CV studies, T. Schaller, F. Niemeyer and B. Römer (University of Duisburg-Essen) for NMR measurements, and J. Haberhauer (Ruhr-Universität Bochum) for her help in quantum chemical calculations. M.M. and S.M.R. thank the DFG (German Research Foundation) for financial support (project ID 387284271, grant SFB 1349). D.J.S. and F.N. acknowledge the Max Planck Gesellschaft for funding.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. was responsible for study conceptualization, investigation, validation, formal analysis, writing the original draft and visualization. C.W. conducted single-crystal X-ray analysis. S.M.R. and M.M. undertook cyclic voltammetry studies in liquid SO2. D.J.S. measured and interpreted the magnetic susceptibility data. F.N. undertook the SQUID study. G.H. wrote the original draft, reviewed and edited the manuscript, and was responsible for visualization and performing calculations. S.S. was responsible for study conceptualization, writing the original draft, manuscript review and editing, visualization, supervision and project administration.

Corresponding authors

Correspondence to Gebhard Haberhauer or Stephan Schulz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ingo Krossing, Yirong Mo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–49, Tables 1–7, and calculated HIA and FIA.

Supplementary Data 1

Computational data: xyz files of all compounds calculated using different basis sets, and text files of calculated absolute energies, bonding energies, thermochemical data.

Supplementary Data 2

Crystallographic data for compound 1a; CCDC reference 2246848.

Supplementary Data 3

Crystallographic data for compound 1b; CCDC reference 2246849.

Supplementary Data 4

Crystallographic data for compound 2a; CCDC reference 2246850.

Supplementary Data 5

Crystallographic data for compound 2b; CCDC reference 2246851.

Supplementary Data 6

Crystallographic data for compound 3a; CCDC reference 2246852.

Supplementary Data 7

Crystallographic data for compound 3b; CCDC reference 2246853.

Supplementary Data 8

Crystallographic data for compound 3c; CCDC reference 2246854.

Supplementary Data 9

Crystallographic data for compound 5; CCDC reference 2246857.

Supplementary Data 10

Crystallographic data for compound 6; CCDC reference 2246858.

Supplementary Data 11

Crystallographic data for compound B; CCDC reference 2246859.

Supplementary Data 12

Crystallographic data for hexakispentafluorophenylbenzene; CCDC reference 2246860.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulte, Y., Wölper, C., Rupf, S.M. et al. Structural characterization and reactivity of a room-temperature-stable, antiaromatic cyclopentadienyl cation salt. Nat. Chem. 16, 651–657 (2024). https://doi.org/10.1038/s41557-023-01417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01417-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing