Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mirror-image trypsin digestion and sequencing of D-proteins

Abstract

The development of mirror-image biology systems and related applications is hindered by the lack of effective methods to sequence mirror-image (D-) proteins. Although natural-chirality (L-) proteins can be sequenced by bottom–up liquid chromatography–tandem mass spectrometry (LC–MS/MS), the sequencing of long D-peptides and D-proteins with the same strategy requires digestion by a site-specific D-protease before mass analysis. Here we apply solid-phase peptide synthesis and native chemical ligation to chemically synthesize a mirror-image version of trypsin, a widely used protease for site-specific protein digestion. Using mirror-image trypsin digestion and LC–MS/MS, we sequence a mirror-image large subunit ribosomal protein (L25) and a mirror-image Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), and distinguish between different mutants of D-Dpo4. We also perform writing and reading of digital information in a long D-peptide of 50 amino acids. Thus, mirror-image trypsin digestion in conjunction with LC–MS/MS may facilitate practical applications of D-peptides and D-proteins as potential therapeutic and informational tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic natural-chirality (l-) and synthetic mirror-image (d-) trypsins.
Fig. 2: Digestion and sequencing of ribosomal protein d-L25.
Fig. 3: Digestion and sequencing of d-Dpo4.
Fig. 4: Writing and reading information in a long d-peptide.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. The E. coli proteome database (Taxonomy 83333) was downloaded from UniProt (https://www.uniprot.org). The LC–MS/MS data were deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD046228. Source data are provided with this paper.

References

  1. Kent, S. B. Novel protein science enabled by total chemical synthesis. Protein Sci. 28, 313–328 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Harrison, K., Mackay, A. S., Kambanis, L., Maxwell, J. W. C. & Payne, R. J. Synthesis and applications of mirror-image proteins. Nat. Rev. Chem. 7, 383–404 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y. Y., Fonslow, B. R., Shan, B., Baek, M. C. & Yates, J. R. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Merrifield, R. B. Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  6. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Milton, R., Milton, S. & Kent, S. B. Total chemical synthesis of a d-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science 256, 1445–1448 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl Acad. Sci. USA 111, 11679–11684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vinogradov, A. A., Evans, E. D. & Pentelute, B. L. Total synthesis and biochemical characterization of mirror image barnase. Chem. Sci. 6, 2997–3002 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, Z., Xu, W., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, W. et al. Mirror-image polymerase chain reaction. Cell Discov. 3, 17037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pech, A. et al. A thermostable d-polymerase for mirror-image PCR. Nucleic Acids Res. 45, 3997–4005 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan, C., Deng, Q. & Zhu, T. F. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nat. Biotechnol. 39, 1548–1555 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, Y. & Zhu, T. F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 378, 405–412 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Vestling, M. M., Murphy, C. M. & Fenselau, C. Recognition of trypsin autolysis products by high-performance liquid chromatography and mass spectrometry. Anal. Chem. 62, 2391–2394 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Bunkenborg, J., Espadas, G. & Molina, H. Cutting edge proteomics: benchmarking of six commercial trypsins. J. Proteome Res. 12, 3631–3641 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kassell, B. & Kay, J. Zymogens of proteolytic enzymes. Science 180, 1022–1027 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Sahin-Toth, M. Human cationic trypsinogen. Role of Asn-21 in zymogen activation and implications in hereditary pancreatitis. J. Biol. Chem. 275, 22750–22755 (2000).

    CAS  PubMed  Google Scholar 

  19. Kukor, Z., Toth, M. & Sahin-Toth, M. Human anionic trypsinogen: properties of autocatalytic activation and degradation and implications in pancreatic diseases. Eur. J. Biochem. 270, 2047–2058 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, M., Wu, F. & Xu, P. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies. Protein Expr. Purif. 116, 120–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Fang, G. M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645–7649 (2011).

    Article  CAS  Google Scholar 

  22. Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).

    Article  CAS  Google Scholar 

  23. Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Slechtova, T., Gilar, M., Kalikova, K. & Tesarova, E. Insight into trypsin miscleavage: comparison of kinetic constants of problematic peptide sequences. Anal. Chem. 87, 7636–7643 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Ling, J. J. et al. Mirror-image 5S ribonucleoprotein complexes. Angew. Chem. Int. Ed. 59, 3724–3731 (2020).

    Article  CAS  Google Scholar 

  26. Keil, B. I. Specificity of Proteolysis (Springer, 1992).

  27. Yang, H. et al. Precision de novo peptide sequencing using mirror proteases of Ac-LysargiNase and trypsin for large-scale proteomics. Mol. Cell Proteomics 18, 773–785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, W. et al. Total chemical synthesis of a thermostable enzyme capable of polymerase chain reaction. Cell Discov. 3, 17008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang, M. et al. Mirror-image gene transcription and reverse transcription. Chem 5, 848–857 (2019).

    Article  CAS  Google Scholar 

  30. Ng, C. C. A. et al. Data storage using peptide sequences. Nat. Commun. 12, 4242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, J. S. et al. A mirror-image protein-based information barcoding and storage technology. Sci. Bull. 66, 1542–1549 (2021).

    Article  CAS  Google Scholar 

  32. Rossler, S. L., Grob, N. M., Buchwald, S. L. & Pentelute, B. L. Abiotic peptides as carriers of information for the encoding of small-molecule library synthesis. Science 379, 939–945 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: discovery of d-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Mandal, K. et al. Chemical synthesis and X-ray structure of a heterochiral {d-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc. Natl Acad. Sci. USA 109, 14779–14784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, H. N. et al. Blocking of the PD-1/PD-L1 interaction by a d-peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 54, 11760–11764 (2015).

    Article  CAS  Google Scholar 

  36. Uppalapati, M. et al. A potent d-protein antagonist of VEGF-A is nonimmunogenic, metabolically stable, and longer-circulating in vivo. ACS Chem. Biol. 11, 1058–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Marinec, P. S. et al. A non-immunogenic bivalent d-protein potently inhibits retinal vascularization and tumor growth. ACS Chem. Biol. 16, 548–556 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Zuckermann, R. N., Kerr, J. M., Siani, M. A., Banville, S. C. & Santi, D. V. Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis. Proc. Natl Acad. Sci. USA 89, 4505–4509 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maaty, W. S. & Weis, D. D. Label-free, in-solution screening of peptide libraries for binding to protein targets using hydrogen exchange mass spectrometry. J. Am. Chem. Soc. 138, 1335–1343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quartararo, A. J. et al. Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat. Commun. 11, 3183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burkhart, J. M., Schumbrutzki, C., Wortelkamp, S., Sickmann, A. & Zahedi, R. P. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J. Proteomics 75, 1454–1462 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Peplow, M. A conversation with Ting Zhu. ACS Cent. Sci. 4, 783–784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, J., Chen, M. & Zhu, T. F. Translating protein enzymes without aminoacyl-tRNA synthetases. Chem 7, 786–798 (2021).

    Article  CAS  Google Scholar 

  44. Service, R. F. A big step toward mirror-image ribosomes. Science 378, 345–346 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Cravatt, B. F., Simon, G. M. & Yates, J. R. 3rd The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553–3565 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Ori, A. et al. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, S. S. & Williamson, J. R. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J. Mol. Biol. 425, 767–779 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Coin, I. The depsipeptide method for solid-phase synthesis of difficult peptides. J. Pept. Sci. 16, 223–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, Y.-C. et al. Facile synthesis of C-terminal peptide hydrazide and thioester of NY-ESO-1 (A39-A68) from an Fmoc-hydrazine 2-chlorotrityl chloride resin. Tetrahedron 70, 2951–2955 (2014).

    Article  CAS  Google Scholar 

  51. Huang, Y. C. et al. Synthesis of l- and d-ubiquitin by one-pot ligation and metal-free desulfurization. Chemistry 22, 7623–7628 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Fang, G. M., Wang, J. X. & Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 51, 10347–10350 (2012).

    Article  CAS  Google Scholar 

  53. Sohma, Y. et al. ‘O-Acyl isopeptide method’ for the efficient synthesis of difficult sequence-containing peptides: use of ‘O-acyl isodipeptide unit’. Tetrahedron Lett. 47, 3013–3017 (2006).

    Article  CAS  Google Scholar 

  54. Maity, S. K., Jbara, M., Laps, S. & Brik, A. Efficient palladium-assisted one-pot deprotection of (acetamidomethyl)cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew. Chem. Int. Ed. 55, 8108–8112 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chen, Q. Deng, C. Fan, H. Liu, G. Wang, Y. Xu, J. Zhang and R. Zhao for assistance with the experiments, and H. Deng and X. Tian at the Tsinghua Technology Center for Protein Sciences, C. C. Wong at the Peking Union Medical College Hospital State Key Laboratory of Complex Severe and Rare Diseases, and T. Guo and Y. Zhu at the Westlake iMarker Lab for assistance with the tandem mass analysis. The work was supported by the National Natural Science Foundation of China (grant nos. 21925702 and 32050178), the Research Center for Industries of the Future (RCIF) at Westlake University, the Westlake Education Foundation, the New Cornerstone Science Foundation, the Tsinghua-Peking Center for Life Sciences (CLS) and the Beijing Frontier Research Center for Biological Structure. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. performed the experiments. Both authors analysed the data and wrote the paper. T.F.Z. designed and supervised the study.

Corresponding author

Correspondence to Ting F. Zhu.

Ethics declarations

Competing interests

A provisional US patent application (no. 63/546,881) has been filed by Westlake University with T.F.Z. and G.Z. listed as inventors. The authors declare no other competing interests.

Peer review

Peer review information

Nature Chemistry thanks Michael Kay, Stephen Kent and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Design of the synthetic l-/d-trypsinogen.

a, Amino acid sequence of the synthetic l-/d-trypsinogen (UniProt P00761). The amino acid colours correspond to the peptide segment colours used in b and Fig. 1a. b, Synthetic route for the total chemical synthesis of l-/d-trypsinogen.

Extended Data Fig. 2 Chiral specificity of trypsin digestion of substrate peptides.

a,b, Analytical RP–HPLC chromatograms of the chemically synthesized l-LYAARLYAVR (a) and d-LYAARLYAVR (b) before digestion. c,d, Analytical RP–HPLC chromatograms of l-LYAARLYAVR (c) and d-LYAARLYAVR (d) digested by the recombinant l-trypsin. e,f, Analytical RP–HPLC chromatograms of l-LYAARLYAVR (e) and d-LYAARLYAVR (f) digested by the synthetic l-trypsin. g,h, Analytical RP–HPLC chromatograms of l-LYAARLYAVR (g) and d-LYAARLYAVR (h) digested by the synthetic d-trypsin. The experiments were performed three times with similar results.

Source data

Extended Data Fig. 3 Chiral specificity of trypsin digestion of ribosomal protein L25 and Dpo4.

ac, Analytical RP–HPLC chromatograms of the synthetic d-L25 before (a) and after digestion by the recombinant l- (b) and synthetic l-trypsin (c). d,e, Analytical RP–HPLC chromatograms of the synthetic l-L25 before (d) and after digestion by the synthetic d-trypsin (e). fh, Analytical RP–HPLC chromatograms of the synthetic d-Dpo4-5m before (f) and after digestion by the recombinant l- (g) and synthetic l-trypsin (h). i,j, Analytical RP–HPLC chromatograms of the recombinant l-Dpo4-5m before (i) and after digestion by the synthetic d-trypsin (j). The experiments were performed twice with similar results.

Source data

Extended Data Fig. 4 Cleavage site specificity of trypsin digestion of ribosomal protein L25 and Dpo4.

a, Observed cleavage frequency at the P1 site of l-L25 digested by the recombinant l- and synthetic l-trypsin, and of d-L25 by the synthetic d-trypsin. b, Observed cleavage frequency at the P1 site of l-Dpo4-5m digested by the recombinant l- and synthetic l-trypsin, and of d-Dpo4-5m by the synthetic d-trypsin. c, Observed cleavage frequency of l-L25 digested by the recombinant l- and synthetic l-trypsin, and of d-L25 by the synthetic d-trypsin, at trypsin cleavage sites with lysine at the P1 site and with or without proline at the P1′ site, displayed on a log scale. d, Observed cleavage frequency of l-Dpo4-5m digested by the recombinant l- and synthetic l-trypsin, and of d-Dpo4-5m by the synthetic d-trypsin, at trypsin cleavage sites with lysine at the P1 site and with or without proline at the P1′ site, displayed on a log scale. The experiments were performed twice with similar results.

Source data

Extended Data Fig. 5 Sorting of de novo sequencing results.

ae, Sorting of de novo sequencing results by the sums of the ALC of the potential 10-aa d-peptide sequences indexed by alanine (a, also shown in Fig. 4e), phenylalanine (b), glycine (c), histidine (d), and leucine (e). The experiment was performed twice with similar results.

Source data

Extended Data Fig. 6 LC–MS/MS analysis of the undigested information-storing 50-aa d-peptide.

a, Design of an information-storing 50-aa d-peptide, also shown in Fig. 5a. b,c, ESI–MS spectrum of the undigested information-storing 50-aa d-peptide (b), with an example of the tandem mass spectra of the undigested d-peptide shown (c). No 50-aa sequence was present in the de novo sequencing results. The experiment was performed twice with similar results.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Tables 1–3.

Reporting Summary

Supplementary Data

PSMs of trypsin-digested ribosomal protein L25 and Dpo4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1

Uncropped gel from Fig. 1b.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhu, T.F. Mirror-image trypsin digestion and sequencing of D-proteins. Nat. Chem. 16, 592–598 (2024). https://doi.org/10.1038/s41557-023-01411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01411-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing