Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Azobenzene as a photoswitchable mechanophore

Abstract

Azobenzene has been widely explored as a photoresponsive element in materials science. Although some studies have investigated the force-induced isomerization of azobenzene, the effect of force on the rupture of azobenzene has not been explored. Here we show that the light-induced structural change of azobenzene can also alter its rupture forces, making it an ideal light-responsive mechanophore. Using single-molecule force spectroscopy and ultrasonication, we found that cis and trans para-azobenzene isomers possess contrasting mechanical properties. Dynamic force spectroscopy experiments and quantum-chemical calculations in which azobenzene regioisomers were pulled from different directions revealed that the distinct rupture forces of the two isomers are due to the pulling direction rather than the energetic difference between the two isomers. These mechanical features of azobenzene can be used to rationally control the macroscopic fracture behaviours of polymer networks by photoillumination. The use of light-induced conformational changes to alter the mechanical response of mechanophores provides an attractive way to engineer polymer networks of light-regulatable mechanical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SMFS measurement of azobenzene derivatives.
Fig. 2: SMFS and dynamic force spectroscopy results for 4-AZB in water.
Fig. 3: SMFS and dynamic force spectroscopy results for 3-AZB and 2-AZB in water.
Fig. 4: UV–vis and GPC characterization of the rupture of 4-AZB isomers in water.
Fig. 5: Quantum-chemical calculation of the force-induced rupture of AZB isomers.
Fig. 6: Mechanical performance of 4-AZB-embedded mechanically active gel networks.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    CAS  PubMed  Google Scholar 

  2. Chen, Y., Mellot, G., van Luijk, D., Creton, C. & Sijbesma, R. P. Mechanochemical tools for polymer materials. Chem. Soc. Rev. 50, 4100–4140 (2021).

    CAS  PubMed  Google Scholar 

  3. Hu, X., McFadden, M. E., Barber, R. W. & Robb, M. J. Mechanochemical regulation of a photochemical reaction. J. Am. Chem. Soc. 140, 14073–14077 (2018).

    CAS  PubMed  Google Scholar 

  4. Muramatsu, T., Sagara, Y., Traeger, H., Tamaoki, N. & Weder, C. Mechanoresponsive behavior of a polymer-embedded red-light emitting rotaxane mechanophore. ACS Appl. Mater. Interfaces 11, 24571–24576 (2019).

    CAS  PubMed  Google Scholar 

  5. Dubach, F. F. C., Ellenbroek, W. G. & Storm, C. How accurately do mechanophores report on bond scission in soft polymer materials? J. Polym. Sci. 59, 1188–1199 (2021).

    CAS  Google Scholar 

  6. Robb, M. J. et al. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc. 138, 12328–12331 (2016).

    CAS  PubMed  Google Scholar 

  7. Kida, J. et al. The photoregulation of a mechanochemical polymer scission. Nat. Commun. 9, 3504 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  8. Li, J., Nagamani, C. & Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48, 2181–2190 (2015).

    CAS  PubMed  Google Scholar 

  9. Nixon, R. & De Bo, G. Three concomitant C–C dissociation pathways during the mechanical activation of an N-heterocyclic carbene precursor. Nat. Chem. 12, 826–831 (2020).

    CAS  PubMed  Google Scholar 

  10. Yang, J. et al. Benzoladderene mechanophores: synthesis, polymerization and mechanochemical transformation. J. Am. Chem. Soc. 141, 6479–6483 (2019).

    CAS  PubMed  Google Scholar 

  11. Aerts, A., Lugger, S. J. D., Heuts, J. P. A. & Sijbesma, R. P. Pyranine based ion-paired complex as a mechanophore in polyurethanes. Macromol. Rapid Commun. 42, e2000476 (2021).

    PubMed  Google Scholar 

  12. Bian, Q., Fu, L. & Li, H. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding. Nat. Commun. 13, 137 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Imato, K., Yamanaka, R., Nakajima, H. & Takeda, N. Fluorescent supramolecular mechanophores based on charge-transfer interactions. Chem. Commun. 56, 7937–7940 (2020).

    CAS  Google Scholar 

  14. Sakai, H. et al. Visualization and quantitative evaluation of toughening polymer networks by a sacrificial dynamic cross-linker with mechanochromic properties. ACS Macro Lett. 9, 1108–1113 (2020).

  15. Kida, J., Aoki, D. & Otsuka, H. Self-strengthening of cross-linked elastomers via the use of dynamic covalent macrocyclic mechanophores. ACS Macro Lett. 10, 558–563 (2021).

    CAS  PubMed  Google Scholar 

  16. Pang, X., Lv, J. A., Zhu, C., Qin, L. & Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 31, e1904224 (2019).

    PubMed  Google Scholar 

  17. Wu, X. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 11, 5556–5565 (2018).

    CAS  Google Scholar 

  18. Yager, K. G. & Barrett, C. J. Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A 182, 250–261 (2006).

    CAS  Google Scholar 

  19. Cho, W. et al. Photo-triggered shape reconfiguration in stretchable reduced graphene oxide-patterned azobenzene-functionalized liquid crystalline polymer networks. Adv. Funct. Mater. 31, 2102106 (2021).

    CAS  Google Scholar 

  20. Ramirez, A. L. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

    CAS  PubMed  Google Scholar 

  21. Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623–628 (2014).

    CAS  PubMed  Google Scholar 

  22. Versaw, B. A., Zeng, T., Hu, X. & Robb, M. J. Harnessing the power of force: development of mechanophores for molecular release. J. Am. Chem. Soc. 143, 21461–21473 (2021).

    CAS  PubMed  Google Scholar 

  23. Imato, K. et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew. Chem. Int. Ed. 54, 6168–6172 (2015).

    CAS  Google Scholar 

  24. Wu, M., Guo, Z., He, W., Yuan, W. & Chen, Y. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chem. Sci. 12, 1245–1250 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    ADS  CAS  PubMed  Google Scholar 

  26. Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).

    Google Scholar 

  27. Yao, R., Li, X., Xiao, N., Weng, W. & Zhang, W. Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent click addition. Nano Res. 14, 2654–2658 (2021).

    ADS  CAS  Google Scholar 

  28. Pill, M. F. et al. Mechanochemical cycloreversion of cyclobutane observed at the single molecule level. Chemistry 22, 12034–12039 (2016).

    CAS  PubMed  Google Scholar 

  29. Kawasaki, K., Aoki, D. & Otsuka, H. Diarylbiindolinones as substituent-tunable mechanochromophores and their application in mechanochromic polymers. Macromol. Rapid Commun. 41, e1900460 (2020).

    PubMed  Google Scholar 

  30. Vantomme, G., Gelebart, A. H., Broer, D. J. & Meijer, E. W. A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahedron 73, 4963–4967 (2017).

    CAS  Google Scholar 

  31. Mamiya, J., Kuriyama, A., Yokota, N., Yamada, M. & Ikeda, T. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes. Chem. Eur. J. 21, 3174–3177 (2015).

    CAS  PubMed  Google Scholar 

  32. Tiu, B. D. B., Delparastan, P., Ney, M. R., Gerst, M. & Messersmith, P. B. Cooperativity of catechols and amines in high-performance dry/wet adhesives. Angew. Chem. Int. Ed. 59, 16616–16624 (2020).

    CAS  Google Scholar 

  33. Li, Y. et al. Molecular design principles of lysine-DOPA wet adhesion. Nat. Commun. 11, 3895 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berkovich, R., Fernandez, V. I., Stirnemann, G., Valle-Orero, J. & Fernandez, J. M. Segmentation and the entropic elasticity of modular proteins. J. Phys. Chem. Lett. 9, 4707–4713 (2018).

    CAS  PubMed  Google Scholar 

  35. Muller, D. J. et al. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem. Rev. 121, 11701–11725 (2021).

    CAS  PubMed  Google Scholar 

  36. Chung, J., Kushner, A. M., Weisman, A. C. & Guan, Z. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 13, 1055–1062 (2014).

    ADS  CAS  PubMed  Google Scholar 

  37. Perkins, T. T., Smith, D. E. & Chu, S. Single polymer dynamics in an elongational flow. Science 276, 2016–2021 (1997).

    CAS  PubMed  Google Scholar 

  38. Zhang, Y. et al. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 13, 56–62 (2021).

    ADS  CAS  PubMed  Google Scholar 

  39. Kersey, F. R., Yount, W. C. & Craig, S. L. Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J. Am. Chem. Soc. 128, 3886–3887 (2006).

    CAS  PubMed  Google Scholar 

  40. Horst, M. et al. Understanding the mechanochemistry of ladder-type cyclobutane mechanophores by single molecule force spectroscopy. J. Am. Chem. Soc. 143, 12328–12334 (2021).

    CAS  PubMed  Google Scholar 

  41. Razgoniaev, A. O. et al. Single-molecule activation and quantification of mechanically triggered palladium-carbene bond dissociation. J. Am. Chem. Soc. 143, 1784–1789 (2021).

    CAS  PubMed  Google Scholar 

  42. Sha, Y. et al. Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem. Sci. 10, 4959–4965 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, Y. & Craig, S. L. Oxidative regulation of the mechanical strength of a C–S bond. Chem. Sci. 11, 10444–10448 (2020).

  44. Kida, J., Aoki, D. & Otsuka, H. Photoinduced regulation of the heat resistance in polymer networks with diarylethene-conjugated reversible covalent cross-links. ACS Macro. Lett. 8, 1–6 (2019).

    CAS  PubMed  Google Scholar 

  45. Mita, I., Horie, K. & Hirao, K. Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film. Macromolecules 22, 558–563 (1989).

    ADS  CAS  Google Scholar 

  46. Diez Cabanes, V., Van Dyck, C., Osella, S., Cornil, D. & Cornil, J. Challenges for incorporating optical switchability in organic-based electronic devices. ACS Appl. Mater. Interfaces 13, 27737–27748 (2021).

    CAS  PubMed  Google Scholar 

  47. Bisoyi, H. K. & Li, Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116, 15089–15166 (2016).

    CAS  PubMed  Google Scholar 

  48. Hugel, T. et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    ADS  PubMed  Google Scholar 

  49. Holland, N. B. et al. Single molecule force spectroscopy of Azobenzene polymers: switching elasticity of single photochromic macromolecules. Macromolecules 36, 2015–2023 (2003).

    ADS  CAS  Google Scholar 

  50. Resetic, A., Milavec, J., Zupancic, B., Domenici, V. & Zalar, B. Polymer-dispersed liquid crystal elastomers. Nat. Commun. 7, 13140 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Surampudi, S. K., Patel, H. R., Nagarjuna, G. & Venkataraman, D. Mechano-isomerization of azobenzene. Chem. Commun. 49, 7519–7521 (2013).

    CAS  Google Scholar 

  52. Turansky, R., Konopka, M., Doltsinis, N. L., Stich, I. & Marx, D. Switching of functionalized azobenzene suspended between gold tips by mechanochemical, photochemical and opto-mechanical means. Phys. Chem. Chem. Phys. 12, 13922–13932 (2010).

    CAS  PubMed  Google Scholar 

  53. Lin, Y., Hansen, H. R., Brittain, W. J. & Craig, S. L. Strain-dependent kinetics in the cis-to-trans isomerization of azobenzene in bulk elastomers. J. Phys. Chem. B 123, 8492–8498 (2019).

    CAS  PubMed  Google Scholar 

  54. Oesterhelt, F., Rief, M. & Gaub, H. E. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J. Phys. 1, 6.1–6.11 (1999).

    Google Scholar 

  55. Bandara, H. M. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    CAS  PubMed  Google Scholar 

  56. Garcia-Amoros, J., Sanchez-Ferrer, A., Massad, W. A., Nonell, S. & Velasco, D. Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes. Phys. Chem. Chem. Phys. 12, 13238–13242 (2010).

    CAS  PubMed  Google Scholar 

  57. Zhang, H. et al. Spiropyran as a mechanochromic probe in dual cross-linked elastomers. Macromolecules 47, 6783–6790 (2014).

    ADS  CAS  Google Scholar 

  58. Friddle, R. W., Noy, A. & De Yoreo, J. J. Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl Acad. Sci. USA 109, 13573–13578 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    ADS  PubMed  Google Scholar 

  60. Stevenson, R. & De Bo, G. Controlling reactivity by geometry in retro-Diels-Alder reactions under tension. J. Am. Chem. Soc. 139, 16768–16771 (2017).

    CAS  PubMed  Google Scholar 

  61. Mardyukov, A., Sanchez-Garcia, E., Crespo-Otero, R. & Sander, W. Interaction and reaction of the phenyl radical with water: a source of OH radicals. Angew. Chem. Int. Ed. 48, 4804–4807 (2009).

    CAS  Google Scholar 

  62. Kubota, K. et al. Introduction of a luminophore into generic polymers via mechanoradical coupling with a prefluorescent reagent. Angew. Chem. Int. Ed. 60, 16003–16008 (2021).

    CAS  Google Scholar 

  63. Wang, Z. J. et al. Azo-crosslinked double-network hydrogels enabling highly efficient mechanoradical generation. J. Am. Chem. Soc. 144, 3154–3161 (2022).

    CAS  PubMed  Google Scholar 

  64. Jiang, J. et al. Computational exploration of polymer mechanochemistry: quantitation of activation force and systematic discovery of reaction sites utilizing two forces. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/637c72e874b7b6b3ba072adc (2022).

  65. Wang, S. et al. Mechanism dictates mechanics: a molecular substituent effect in the macroscopic fracture of a covalent polymer network. J. Am. Chem. Soc. 143, 3714–3718 (2021).

    CAS  PubMed  Google Scholar 

  66. Wang, S., Panyukov, S., Rubinstein, M. & Craig, S. L. Quantitative adjustment to the molecular energy parameter in the Lake-Thomas theory of polymer fracture energy. Macromolecules 52, 2772–2777 (2019).

    ADS  CAS  Google Scholar 

  67. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    ADS  CAS  Google Scholar 

  68. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    CAS  Google Scholar 

  69. Wang, Z. et al. Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Science 374, 193–196 (2021).

    ADS  CAS  PubMed  Google Scholar 

  70. Matsuda, T. et al. Yielding criteria of double network hydrogels. Macromolecules 49, 1865–1872 (2016).

    ADS  CAS  Google Scholar 

  71. Chen, Y. et al. Fast reversible isomerization of merocyanine as a tool to quantify stress history in elastomers. Chem. Sci. 12, 1693–1701 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  72. Brügner, O. & Walter, M. Temperature and loading rate dependent rupture forces from universal paths in mechanochemistry. Phys. Rev. Mater. 2, 113603 (2018).

    Google Scholar 

  73. Walton, E. B., Lee, S. & Van Vliet, K. J. Extending Bell’s model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophys. J. 94, 2621–2630 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kianfar, P., Abolfathi, N. & Karimi, N. Z. Investigating the effect of different transducer stiffness values on the contactin complex detachment by steered molecular dynamics. J. Mol. Graph. Model. 75, 340–346 (2017).

    CAS  PubMed  Google Scholar 

  75. Zheng, P. & Li, H. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy. Biophys. J. 101, 1467–1473 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng, P. & Li, H. Highly covalent ferric-thiolate bonds exhibit surprisingly low mechanical stability. J. Am. Chem. Soc. 133, 6791–6798 (2011).

    CAS  PubMed  Google Scholar 

  77. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    ADS  CAS  PubMed  Google Scholar 

  78. Sagara, Y. et al. Rotaxane-based mechanophores enable polymers with mechanically switchable white photoluminescence. ACS. Cent. Sci. 5, 874–881 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bertrand, O. & Gohy, J.-F. Photo-responsive polymers: synthesis and applications. Polym. Chem. 8, 52–73 (2017).

    CAS  Google Scholar 

  80. Lugger, J. A. M., Marin San Roman, P. P., Kroonen, C. C. E. & Sijbesma, R. P. Nanoporous films with photoswitchable absorption kinetics based on polymerizable columnar discotic liquid crystals. ACS Appl. Mater. Interfaces 13, 4385–4392 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu, H. & Kobayashi, T. Photoresponsive block copolymers containing azobenzenes and other chromophores. Molecules 15, 570–603 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    ADS  CAS  Google Scholar 

  83. Becke, A. D. A new mixing of Hartree-Fock and local density‐functional theories. J. Chem. Phys. 98, 1372–1377 (1993).

    ADS  CAS  Google Scholar 

  84. Becke, A. D. Density‐functional thermochemistry. III The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS  CAS  Google Scholar 

  85. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    ADS  CAS  Google Scholar 

  86. Frisch, M. J. et al. Gaussian 16 (Gaussian, 2016).

  87. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS  PubMed  Google Scholar 

  88. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  89. McLean, A. D. & Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72, 5639–5648 (1980).

    ADS  CAS  Google Scholar 

  90. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    ADS  CAS  Google Scholar 

  91. Bauernschmitt, R. & Ahlrichs, R. Stability analysis for solutions of the closed shell Kohn-Sham equation. J. Chem. Phys. 104, 9047–9052 (1996).

    ADS  CAS  Google Scholar 

  92. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).

    CAS  PubMed  Google Scholar 

  93. Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).

    ADS  PubMed  Google Scholar 

  94. Maeda, S., Ohno, K. & Morokuma, K. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys. Chem. Chem. Phys. 15, 3683–3701 (2013).

    CAS  PubMed  Google Scholar 

  95. Maeda, S., Harabuchi, Y., Takagi, M., Taketsugu, T. & Morokuma, K. Artificial force induced reaction (AFIR) method for exploring quantum chemical potential energy surfaces. Chem. Rec. 16, 2232–2248 (2016).

    CAS  PubMed  Google Scholar 

  96. Maeda, S. et al. Implementation and performance of the artificial force induced reaction method in the GRRM17 program. J. Comput. Chem. 39, 233–251 (2018).

    CAS  PubMed  Google Scholar 

  97. Maeda, S. & Harabuchi, Y. Exploring paths of chemical transformations in molecular and periodic systems: an approach utilizing force. WIREs Comput. Mol. Sci. 11, e1538 (2021).

    CAS  Google Scholar 

  98. Zheng, Y. et al. In situ and real-time visualization of mechanochemical damage in double-network hydrogels by prefluorescent probe via oxygen-relayed radical trapping. J. Am. Chem. Soc. 145, 7376–7389 (2023).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Li and X. Wang for helpful discussions. This work was supported mainly by the National Natural Science Foundation of China (nos. T2225016, 12002149, T2322010 and 11934008) to Y. Cao, Y.L., B.X. and W.W., the National Key R&D Program of China (grant no. 2020YFA0908100) to Y. Cao, the Fundamental Research Funds for the Central Universities (grant no. 020514380274) to Y. Cao and the Natural Science Foundation of Jiangsu Province (no. BK20220120) to B.X. This work was partially supported by JSPS KAKENHI (grant no. JP22H04968) to J.P.G. and T.N., by JST, PRESTO, Japan (grant no. JPMJPR2098) to T.N. and by a scholarship of MEXT Japan to Z.J.W.

Author information

Authors and Affiliations

Authors

Contributions

Y. Cao, J.P.G., T.N., S.M. and W.W. conceived the idea and designed the study. Y.L. performed the experiments and analysed the results. J.L., J.Z. and Z.Z. performed some of the SMFS experiments. J.Y., B.X. and Z.J.W. prepared the hydrogel samples and tensile tests. Y.Z., M.W. and Y. Chen performed some of the ultrasonication tests. Y.Y., J.J., Y.H., and S.M. performed the quantum calculations. Y. Cao, W.W., S.M. and J.P.G. wrote and refined the paper. Y. Cao and W.W. supervised the project. All authors discussed the results.

Corresponding authors

Correspondence to Wei Wang, Satoshi Maeda, Jian Ping Gong or Yi Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Constantino Creton, Anne-Sophie Duwez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6, Figs. 1–21, text, references and the Cartesian coordinates of the optimized structures.

Supplementary Data 1

Source data for Supplementary Figures.

Source data

Source Data Fig. 2

Force curves and statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

GPC and UV–vis curves presented in Fig. 4.

Source Data Fig. 5

Distance–force curves presented in Fig. 5.

Source Data Fig. 6

Stress–strain curves and statistical source data presented in Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xue, B., Yang, J. et al. Azobenzene as a photoswitchable mechanophore. Nat. Chem. 16, 446–455 (2024). https://doi.org/10.1038/s41557-023-01389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01389-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing