Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Click processes orthogonal to CuAAC and SuFEx forge selectively modifiable fluorescent linkers

Abstract

The appeal of catalytic click chemistry is largely due to the copper-catalysed azide–alkyne cycloaddition (CuAAC) process, which is orthogonal to the more recently introduced sulfur–fluoride exchange (SuFEx). However, the triazole rings generated by CuAAC are not readily modifiable, and SuFEx connectors cannot be selectively functionalized, attributes that would be attractive in a click process. Here we introduce bisphosphine–copper-catalysed phenoxydiazaborinine formation (CuPDF), a link-and-in situ modify strategy for merging a nitrile, an allene, a diborane and a hydrazine. We also present copper- and palladium-catalysed quinoline formation (Cu/PdQNF), which is applicable in aqueous media, involving an aniline as the modifier. CuPDF and Cu/PdQNF are easy to perform and deliver robust, alterable and tunable fluorescent hubs. CuPDF and Cu/PdQNF are orthogonal to SuFEx and CuAAC, despite the latter and CuPDF also being catalysed by an organocopper species. These advantages were applied to protecting group-free syntheses of sequence-defined branched oligomers, a chemoselectively amendable polymer, three drug conjugates and a two-drug conjugate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State of the art in catalytic click chemistry, and the potential impact of a link-and-in situ modify click strategy that is orthogonal to CuAAC and SuFEx.
Fig. 2: A link-and-in situ modify click process (CuPDF) that is copper-catalysed yet orthogonal to CuAAC.
Fig. 3: Efficient synthesis of uniform, sequence-defined branched oligomers by combining CuPDF, CuAAC and SuFEx.
Fig. 4: Efficient synthesis of uniform, sequence-defined branched oligomers by combining CuPDF, CuAAC and SuFEx.
Fig. 5: Protecting group-free synthesis of a polymer.
Fig. 6: Efficient bioconjugation/fluorescent marking.

Similar content being viewed by others

Data availability

All data in support of the findings of this study are available within the Article and its Supplementary Information.

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    CAS  Google Scholar 

  2. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    CAS  Google Scholar 

  3. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    PubMed  Google Scholar 

  4. Devaraj, N. K. The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yi, G., Son, J., Yoo, J., Park, C. & Koo, H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater. Res. 22, 13 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    CAS  PubMed  Google Scholar 

  7. Huisgen, R., Szeimies, G. & Möbius, L. 1.3‐Dipolare Cycloadditionen, XXXII. Kinetik der additionen organischer Azide an CC‐mehrfachbindungen. Chem. Ber. 100, 2494–2507 (1967).

    CAS  Google Scholar 

  8. Johansson, J. R., Beke-Somfai, T., Said Stålsmeden, A. & Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism and applications. Chem. Rev. 116, 14726–14768 (2016).

    CAS  PubMed  Google Scholar 

  9. Bae, I., Han, H. & Chang, S. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne and amine. J. Am. Chem. Soc. 127, 2038–2039 (2005).

    CAS  PubMed  Google Scholar 

  10. Lee, I.-H., Kim, H. & Choi, T.-L. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines). J. Am. Chem. Soc. 135, 3760–3763 (2013).

    CAS  PubMed  Google Scholar 

  11. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    CAS  Google Scholar 

  12. Homer, J. A. et al. Sulfur fluoride exchange. Nat. Rev. Methods Prim. 3, 58 (2023).

    CAS  Google Scholar 

  13. Barnes, J. C. et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem. 7, 810–815 (2015).

    CAS  PubMed  Google Scholar 

  14. Yang, C., Flynn, J. P. & Niu, J. Facile synthesis of sequence‐regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew. Chem. Int. Ed. 57, 16194–16199 (2018).

    CAS  Google Scholar 

  15. Li, S. et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13, 858–867 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(VI) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017).

    CAS  Google Scholar 

  17. Zhang, S. et al. Delayed catalyst function enables direct enantioselective conversion of nitriles to NH2-amines. Science 364, 45–51 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horneff, T., Chuprakov, S., Chemyak, N., Gevorgyan, V. & Fokin, V. V. Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. J. Am. Chem. Soc. 130, 14972–14974 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, F. et al. Biocompatible SuFEx click chemistry: thionyl tetrafluoride (SOF4)‐derived connective hubs for bioconjugation to DNA and proteins. Angew. Chem. Int. Ed. 58, 8029–8033 (2019).

    ADS  CAS  Google Scholar 

  20. Choi, E. J., Jung, D., Kim, J.-S., Lee, Y. & Kim, B. M. Chemoselective tyrosine bioconjugation through sulfate click reaction. Chem. Eur. J. 24, 10948–10952 (2018).

    CAS  PubMed  Google Scholar 

  21. Lang, K. & Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).

    CAS  PubMed  Google Scholar 

  22. deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    CAS  PubMed  Google Scholar 

  23. Gilbert, M. R. et al. Cilengitide in patients with recurrent glioblastoma: the results of NABTC 03-02, a phase II trial with measures of treatment delivery. J. Neurooncol. 106, 147–153 (2012).

    CAS  PubMed  Google Scholar 

  24. Burke, P. A. et al. Cilengitide targeting of αvβ3 integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 62, 4263–4272 (2002).

    CAS  PubMed  Google Scholar 

  25. Eisele, G. et al. Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression. J. Neurooncol. 117, 141–145 (2014).

    CAS  PubMed  Google Scholar 

  26. Katsamakas, S., Chatzisideri, T., Thysiadis, S. & Sarli, V. RGD-mediated delivery of small-molecule drugs. Future Med. Chem. 9, 579–604 (2017).

    CAS  PubMed  Google Scholar 

  27. Battistini, L., Bugatti, K., Sartori, A., Curti, C. & Zanardi, F. RGD peptide‐drug conjugates as effective dual targeting platforms: recent advances. Eur. J. Org. Chem. 2021, 2506–2528 (2021).

    CAS  Google Scholar 

  28. Schultz, K. C. et al. A genetically encoded infrared probe. J. Am. Chem. Soc. 128, 13984–13985 (2006).

    CAS  PubMed  Google Scholar 

  29. Chatterjee, A., Xiao, H., Bollong, M., Ai, H.-W. & Schultz, P. G. Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc. Natl Acad. Sci. USA 110, 11803–11808 (2013).

  30. Jang, H., Zhugralin, A. R., Lee, Y. & Hoveyda, A. H. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC-Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. J. Am. Chem. Soc. 133, 7859–7871 (2011).

    CAS  PubMed  Google Scholar 

  31. Worrell, B. T., Malik, J. A. & Fokin, V. V. Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science 340, 457–460 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. del Pozo, J. et al. Streamlined catalytic enantioselective synthesis of α-substituted β,γ-unsaturated ketones and either of the corresponding tertiary homoallylic alcohol diastereomers. J. Am. Chem. Soc. 142, 18200–18212 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoveyda, A. H., Malcolmson, S. J., Meek, S. J. & Zhugralin, A. R. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more. Angew. Chem. Int. Ed. 49, 34–44 (2010).

    CAS  Google Scholar 

  34. Dilek, O., Lei, Z., Mukherjee, K. & Bane, S. Rapid formation of a stable boron-nitrogen heterocycle in dilute, neutral aqueous solution for bioorthogonal coupling reactions. Chem. Commun. 51, 16992–16995 (2015).

    CAS  Google Scholar 

  35. Stress, C. J., Schmidt, P. J. & Gillingham, D. G. Comparison of boron-assisted oxime and hydrazone formations leads to the discovery of a fluorogenic variant. Org. Biomol. Chem. 14, 5529–5533 (2016).

    CAS  PubMed  Google Scholar 

  36. Gillingham, D. The role of boronic acids in accelerating condensation reactions of α-effect amines with carbonyls. Org. Biomol. Chem. 14, 7606–7609 (2016).

    CAS  PubMed  Google Scholar 

  37. Baldock, C. et al. A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274, 2107–2110 (1996).

    ADS  CAS  PubMed  Google Scholar 

  38. Levy, C. W. et al. A study of the structure-activity relationship for diazaborine inhibition of Escherichia coli enoyl-ACP reductase. J. Mol. Biol. 309, 171–180 (2001).

    CAS  PubMed  Google Scholar 

  39. Reith, M. A. et al. Sequence-defined mikto-arm star-shaped macromolecules. J. Am. Chem. Soc. 144, 7236–7244 (2022).

    CAS  PubMed  Google Scholar 

  40. Smedley, C. J. et al. Accelerated SuFEx click chemistry for modular synthesis. Angew. Chem. Int. Ed. 61, e202112375 (2022).

    ADS  CAS  Google Scholar 

  41. Thomas, S. W., Joly, G. D. & Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007).

    CAS  PubMed  Google Scholar 

  42. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilad, Y. et al. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers 106, 160–171 (2016).

    CAS  PubMed  Google Scholar 

  44. Portman, D. J., Bachmann, G. A. & Simon, J. A. Ospemifene, a novel selective estrogen receptor modulator for treating dyspareunia associated with postmenopausal vulvar and vaginal atrophy. Menopause 20, 623–630 (2013).

    PubMed  Google Scholar 

  45. Hirate, K., Uchida, A., Ogawa, Y., Arai, T. & Yoda, K. Zaltoprofen, a non-steroidal anti-inflammatory drug, inhibits bradykinin-induced pain responses without blocking bradykinin receptors. Neurosci. Res. 54, 288–294 (2006).

    CAS  PubMed  Google Scholar 

  46. Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).

    PubMed  Google Scholar 

  47. Braganza, J. M., Herman, K., Hine, P. & Kay, G. The effect of pentagastrin on peptic secretion in man. J. Physiol. 289, 9–16 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Achilonu, I., Iwuchukwu, E. A., Achilonu, O. J., Fernandes, M. A. & Sayed, Y. Targeting the SARS-CoV-2 main protease using FDA-approved Isavuconazonium, a P2–P3 α-ketoamide derivative and Pentagastrin: an in-silico drug discovery approach. J. Mol. Graph. Model. 101, 107730 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Coelingh Bennink, H. J. T., Verhoeven, C., Dutman, A. E. & Thijssen, J. The use of high-dose estrogens for the treatment of breast cancer. Maturitas 95, 11–23 (2017).

    CAS  PubMed  Google Scholar 

  50. Totir, M. A. et al. Sulbactam forms only minimal amounts of irreversible acrylate-enzyme with SHV-1 β-lactamase. Biochemistry 46, 8980–8987 (2007).

    CAS  PubMed  Google Scholar 

  51. Leophairatana, P., Samanta, S., De Silva, C. C. & Koberstein, J. T. Preventing alkyne-alkyne (that is, Glaser) coupling associated with the ATRP synthesis of alkyne-functional polymers/macromonomers and for alkynes under click (that is, CuAAC) reaction conditions. J. Am. Chem. Soc. 139, 3756–3766 (2017).

  52. Al-Huniti, M. H. et al. Development and utilization of a palladium-catalyzed dehydration of primary amides to form nitriles. Org. Lett. 20, 6046–6050 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gong, W., Zhang, G., Liu, T., Giri, R. & Yu, J.-Q. Site-selective C(sp3)-H functionalization of di-, tri- and tetrapeptides at the N-terminus. J. Am. Chem. Soc. 136, 16940–16946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hodgson, R. & Nelson, A. A two-directional synthesis of the C58-C71 fragment of palytoxin. Org. Biomol. Chem. 2, 373–386 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the ANR (project PRACTACAL), CNRS and the Jean-Marie Lehn Research Foundation at the University of Strasbourg. The early stages of this work were supported by the National Institutes of Health (GM-130395). K.E.L. was supported by a Complex Systems Chemistry (CSC) graduate fellowship funded by the French National Research Agency (CSC-IGS ANR-17-EURE-0016). We thank S.-Y. Liu, J. Niu and A. Chatterjee for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.H.S.P., J.d.P., F.R. and A.H.H. conceived the concept. P.H.S.P., M.F. and C.Z. designed and performed the studies regarding the synthesis of sequence-defined oligomers and polymers, and K.E.L., F.R. and V.B. planned and carried out the bioconjugation studies. J.d.P. and M.E.H. investigated the mechanistic aspects of the CuPDF process. The investigations were directed by A.H.H., who composed the manuscript with revisions provided by the other authors.

Corresponding author

Correspondence to Amir H. Hoveyda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Shengtao Deng, Andre Isaacs, Christopher Smedley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Merger of CuPDF, CuAAC and SuFEx for synthesis of a non-uniform, sequence-defined polymer.

As an example, subjection of two-pronged monomers iii and iv on the one hand, and v and vi on the other, to the envisioned link-and-in situ modify conditions would deliver complementary dimers VII and IX (via VI and VIII, respectively). While VII would contain a fluorosulfate and a terminal alkyne, IX would be equipped with an azide (for CuAAC, in red) and a silyl ether (for SuFEx, in brown). Simultaneous subjection of an equal mixture of VII and IX to copper and base catalysts needed for CuAAC and SuFEx, respectively, would afford sequence-defined polymer X with amendable and differentiable linkers, depending on the amino alcohols involved in the modify steps (namely, G1 and G2). Hence, after just four chemical steps, performed in three vessels, and without the need for protection/deprotection or any other type of functional group adjustments, four monomers iii-vi could be transformed to polymer X. CuAAC, Cu-catalysed azide–alkyne cycloaddition; SuFEx, sulfur-fluoride exchange; M, monomer.

Extended Data Fig. 2 Insight regarding the orthogonality of CuPDF and CuAAC and the uniqueness of the phos ligand.

a, CuAAC (in red) with phos–CuB(pin) is considerably less effective than the more established protocols (for example, condition A, Fig. 2c). b, Experimental evidence indicating that addition of phos–CuB(pin) to an allene is faster than an alkyne. c, With dppf as the ligand, the desired three-component process affording 6 is less efficient than when phos is used (compare to data in Fig. 2b). d, Additionally, with dppf as the ligand, chemoselectivity is lower than when phos is used: addition of the corresponding Cu–B(pin) complex to alkyne 2 is more competitive. Ts, p-toluenesulfonate; pin, pinacolato; dppf, 1,1’-bis(diphenylphosphino)ferrocene; CuAAC, copper(I)-catalysed alkyne-azide cycloaddition; Bz, benzoate.

Extended Data Fig. 3 A Cu/PdQNF process that furnishes a different linker (compared to 12a).

By altering the structure the aniline, the resulting quinoline can possess distinct physical (excitation and emission bands) and chemical attributes (clickable nitrile). Cu/PdQNF (in purple), copper- and palladium-catalysed quinoline formation. The colour of the linker corresponds to that of the fluorescent emission. Ac, acyl; Bn, benzyl; pin, pinacolato; Trt (trityl); dppf, diphenylphosphinoferrocene; TFA, trifluoroacetic acid; DTT, dithiothreitol; TFA, trifluoroacetic acid.

Supplementary information

Supplementary Information

Supplementary Figs. 1–60 and NMR spectra for all compounds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paioti, P.H.S., Lounsbury, K.E., Romiti, F. et al. Click processes orthogonal to CuAAC and SuFEx forge selectively modifiable fluorescent linkers. Nat. Chem. 16, 426–436 (2024). https://doi.org/10.1038/s41557-023-01386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01386-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing