Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lateral epitaxial growth of two-dimensional organic heterostructures

Abstract

Two-dimensional organic lateral heterostructures (2D OLHs) are attractive for the fabrication of functional materials. However, it is difficult to control the nucleation, growth and orientation of two distinct components. Here we report the combination of two methods—liquid-phase growth and vapour-phase growth—to synthesize 2D OLHs from perylene and a perylenecarboxaldehyde derivative, with a lateral size of ~20 μm and a tunable thickness ranging from 20 to 400 nm. The screw dislocation growth behaviour of the 2D crystals shows the spiral arrangement of atoms within the crystal lattice, which avoids volume expansion and contraction of OLH, thereby minimizing lateral connection defects. Selective control of the nucleation and sequential growth of 2D crystals leads to structural inversion of the 2D OLHs by the vapour-phase growth method. The resulting OLHs show good light-transport capabilities and tunable spatial exciton conversion, useful for photonic applications. This synthetic strategy can be extended to other families of organic polycyclic aromatic hydrocarbons, as demonstrated with other pyrene and perylene derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-step strategy for the synthesis of 2D OLHs with structural inversion.
Fig. 2: Characterizations of Pe−PeO lateral heterostructures.
Fig. 3: Characterizations of PeO−Pe lateral heterostructures.
Fig. 4: Optical applications of two lateral heterostructures.
Fig. 5: General synthesis of OLHs.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1546182 (Pe) and 2203762 (PeO). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/. All data are available in the main Article and Supplementary Information. Source data are provided with this paper.

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Tan, C. & Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137, 12162–12174 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, W. et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Li, M. Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multi-heterostructures and superlattices. Science 357, 788–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Pope, M., Charles, E. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, 1999).

  12. Briseno, A. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Minemawari, H. et al. Inkjet printing of single-crystal films. Nature 475, 364–367 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Osamu, O. et al. Synchronous assembly of chiral skeletal single-crystalline microvessels. Science 377, 673–678 (2022).

    Article  ADS  Google Scholar 

  15. Annadhasan, M. et al. Mechanophotonics: flexible single-crystal organic waveguides and circuits. Angew. Chem. Int. Ed. 59, 13852–13858 (2020).

    Article  CAS  Google Scholar 

  16. Chandrasekar, R. Mechanophotonics—mechanical micromanipulation of single-crystals toward organic photonic integrated circuits. Small 17, 2100277 (2021).

    Article  CAS  Google Scholar 

  17. Ravi, J., Annadhasan, M., Kumar, A. V. & Chandrasekar, R. Mechanically reconfigurable organic photonic integrated circuits made from two electronically different flexible microcrystals. Adv. Funct. Mater. 31, 2100642 (2021).

    Article  CAS  Google Scholar 

  18. Chandrasekar, R. Mechanophotonics–a guide to integrating microcrystals toward monolithic and hybrid all-organic photonic circuits. Chem. Commun. 58, 3415–3428 (2022).

    Article  CAS  Google Scholar 

  19. Sun, J. et al. 2D-organic hybrid heterostructures for optoelectronic applications. Adv. Mater. 31, 1803831 (2019).

    Article  Google Scholar 

  20. Zhang, L. et al. 2D organic single crystals: synthesis, novel physics, high-performance optoelectronic devices and integration. Mater. Today 50, 442–475 (2021).

    Article  Google Scholar 

  21. Li, R. J., Hu, W. P., Liu, Y. Q. & Zhu, D. B. Micro- and nanocrystals of organic semiconductors. Acc. Chem. Res. 43, 529–540 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Shi, X. et al. Hierarchical supramolecular self-assembly: fabrication and visualization of multiblock microstructures. Angew. Chem. Int. Ed. 61, e202211298 (2022).

    Article  CAS  Google Scholar 

  23. Clark, J. & Lanzani, G. Organic photonics for communications. Nat. Photon. 4, 438–446 (2010).

    Article  ADS  CAS  Google Scholar 

  24. Yu, P., Zhen, Y., Dong, H. & Hu, W. Crystal engineering of organic optoelectronic. Mater. Chem. 5, 2814–2853 (2019).

    CAS  Google Scholar 

  25. Yang, F. et al. 2D organic materials for optoelectronic applications. Adv. Mater. 30, 1702415 (2018).

    Article  Google Scholar 

  26. Zhu, X. et al. Negative phototransistors with ultrahigh sensitivity and weak-light detection based on 1D/2D molecular crystal p-n heterojunctions and their application in light encoders. Adv. Mater. 34, 2201364 (2022).

    Article  CAS  Google Scholar 

  27. Shi, Y. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun. 9, 2933 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Cao, M. et al. Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit. Nat. Commun. 10, 756 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y. et al. Cocrystal engineering: toward solution-processed near-infrared 2D organic cocrystals for broadband photodetection. Angew. Chem. Int. Ed. 60, 6344–6350 (2021).

    Article  CAS  Google Scholar 

  30. Qin, Z. et al. Molecular doped, color-tunable, high-mobility, emissive, organic semiconductors for light-emitting transistors. Sci. Adv. 8, eabp8775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, K. & Zhao, Y. S. Pursuing electrically pumped lasing with organic semiconductors. Chem 7, 3221–3231 (2021).

    Article  CAS  Google Scholar 

  32. Zhang, W., Yao, J. & Zhao, Y. S. Organic micro/nanoscale lasers. Acc. Chem. Res. 49, 1691–1700 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Pradeep, V. V. & Chandrasekar, R. Micromanufacturing of geometrically and dimensionally precise molecular single-crystal photonic microresonators via focused ion beam milling. Adv. Opt. Mater. 10, 2201150 (2022).

    Article  CAS  Google Scholar 

  34. Sun, Y., Lei, Y., Hu, W. & Wong, W.-Y. Epitaxial growth of nanorod meshes from luminescent organic cocrystals via crystal transformation. J. Am. Chem. Soc. 142, 7265–7269 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Lei, Y., Sun, Y., Liao, L., Lee, S.-T. & Wong, W.-Y. Facet-selective growth of organic heterostructured architectures via sequential crystallization of structurally complementary π-conjugated molecules. Nano Lett. 17, 695–701 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Lei, Y. et al. Complex assembly from planar and twisted π-conjugated molecules towards alloy helices and core-shell structures. Nat. Commun. 9, 4358 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Ye, X. et al. Microspacing in-air sublimation growth of organic crystals. Chem. Mater. 30, 412–420 (2018).

    Article  CAS  Google Scholar 

  38. Ye, X. et al. 1D versus 2D cocrystals growth via microspacing in-air sublimation. Nat. Commun. 10, 761 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hai, T. et al. Vapor-phase living assembly of π-conjugated organic semiconductors. ACS Nano 16, 3290–3299 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Chandrasekhar, N. & Chandrasekar, R. Reversibly shape-shifting organic optical waveguides: formation of organic nanorings, nanotubes and nanosheets. Angew. Chem. Int. Ed. 51, 3556–3561 (2012).

    Article  CAS  Google Scholar 

  41. Xu, F. et al. Organoplatinum(II) cruciform: a versatile building block to fabricate 2D microcrystals with full-color and white phosphorescence and anisotropic photon transport. Angew. Chem. Int. Ed. 61, e202116603 (2022).

    Article  ADS  CAS  Google Scholar 

  42. Pradeep, V. V. et al. Ambient pressure sublimation technique provides polymorph-selective perylene nonlinear optical microcavities. Adv. Opt. Mater. 8, 1901317 (2020).

    Article  CAS  Google Scholar 

  43. Pradeep, V. V., Annadhasan, M. & Chandrasekar, R. Vapour-phase epitaxial growth of dual-colour-emitting DCM-perylene micro-heterostructure optical waveguides. Chem. Asian J. 24, 4577–4581 (2019).

    Article  Google Scholar 

  44. Valenta, J. et al. Active planar optical waveguide made from luminescent silicon nanocrystals. Appl. Phys. Lett. 82, 955–957 (2003).

    Article  ADS  CAS  Google Scholar 

  45. Chandrasekhar, N., Mohiddon, M. A. & Chandrasekar, R. Organic submicro tubular optical waveguides: self-assembly, diverse geometries, efficiency and remote sensing properties. Adv. Opt. Mater. 1, 305–311 (2013).

    Article  Google Scholar 

  46. Liu, K. et al. Vibrational strong coupling between surface phonon polaritons and organic molecules via single quartz micropillars. Adv. Mater. 34, 2109088 (2022).

    Article  CAS  Google Scholar 

  47. Zhuo, M. P. et al. Hierarchical self-assembly of organic heterostructure nanowires. Nat. Commun. 10, 3839 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Zhu, W. G. et al. Uncovering the intramolecular emission and tuning the nonlinear optical properties of organic materials by cocrystallization. Angew. Chem. Int. Ed. 55, 14023–14027 (2016).

    Article  CAS  Google Scholar 

  49. Kang, L., Fu, H., Cao, X., Shi, Q. & Yao, J. N. Controlled morphogenesis of organic polyhedral nanocrystals from cubes, cubooctahedrons, to octahedrons by manipulating the growth kinetics. J. Am. Chem. Soc. 133, 1895–1901 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.-D.W. acknowledges financial support from the National Natural Science Foundation of China (nos. 21971185 and 52173177), the Natural Science Foundation of Jiangsu Province (no. BK20221362) and the Science and Technology Support Program of Jiangsu Province (no. TJ-2022-002). This work was also supported by the Suzhou Key Laboratory of Functional Nano & Soft Materials, the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices and Soochow University Tang Scholar scheme.

Author information

Authors and Affiliations

Authors

Contributions

X.-D.W., M.Z. and L.-S.L. conceived the project. Q.L. synthesized the 2D organic lateral heterostructures and investigated their growth mechanism. Q.L. conducted the SEM, FM and Raman measurements and data analysis. Y.Y. performed the optical characterizations. C.-F.X. and X.-Y.X. carried out the AFM and solubility measurements. Y.-J.Y. conducted the TEM measurements. All authors discussed the results. Q.L. wrote the paper with input from all of the authors. The project was supervised by X.-D.W., M.Z. and L.-S.L.

Corresponding authors

Correspondence to Xue-Dong Wang, Min Zheng or Liang-Sheng Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Wai-Yeung Wong and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41, Tables 1–5, Notes 1–3 and References.

Supplementary Data 1

Crystal CIF for Pe single crystals.

Supplementary Data 2

Crystal CIF for PeO single crystals.

Supplementary Data 3

Source Data for Supplementary Figs. 5, 13, 19, 21, 24, 29, 30, 31, 32, 33 and 35.

Source data

Source Data Fig. 1

Unprocessed fluorescence microscopy images.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Q., Wang, XD., Yu, Y. et al. Lateral epitaxial growth of two-dimensional organic heterostructures. Nat. Chem. 16, 201–209 (2024). https://doi.org/10.1038/s41557-023-01364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01364-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing