Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular and diverse synthesis of amino acids via asymmetric decarboxylative protonation of aminomalonic acids

Abstract

Stereoselective protonation is a challenge in asymmetric catalysis. The small size and high rate of transfer of protons mean that face-selective delivery to planar intermediates is hard to control, but it can unlock previously obscure asymmetric transformations. Particularly, when coupled with a preceding decarboxylation, enantioselective protonation can convert the abundant acid feedstocks into structurally diverse chiral molecules. Here an anchoring group strategy is demonstrated as a potential alternative and supplement to the conventional structural modification of catalysts by creating additional catalyst–substrate interactions. We show that a tailored benzamide group in aminomalonic acids can help build a coordinated network of non-covalent interactions, including hydrogen bonds, ππ interactions and dispersion forces, with a chiral acid catalyst. This allows enantioselective decarboxylative protonation to give α-amino acids. The malonate-based synthesis introduces side chains via a facile substitution of aminomalonic esters and thus can access structurally and functionally diverse amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anchoring group strategy for asymmetric decarboxylative protonation.
Fig. 2: Identification and optimization of a benzamide non-covalent interaction anchor.
Fig. 3: Synthesis of amino acids with diverse alkyl chainsa.
Fig. 4: Representative application scenarios of the asymmetric malonic ester synthesis.
Fig. 5: Mechanistic experiments and consideration.
Fig. 6: Origins of enantiocontrol and roles of the anchoring group.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for compound (+)-6 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition no. CCDC 2206851. These data can be obtained free of charge from the CCDC (http://www.ccdc.cam.ac.uk/data_request/cif). Source data are provided with this paper.

References

  1. Fehr, C. Enantioselective protonation of enolates and enols. Angew. Chem. Int. Ed. 35, 2566–2587 (1996).

    Article  Google Scholar 

  2. Duhamel, L., Duhamel, P. & Plaquevent, J. ‑C. Enantioselective protonations: fundamental insights and new concepts. Tetrahedron 15, 3653–3691 (2004).

    Article  CAS  Google Scholar 

  3. Mohr, J. T., Hong, A. Y. & Stoltz, B. M. Enantioselective protonation. Nat. Chem. 1, 359–369 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Blanchet, J., Baudoux, J., Amere, M., Lasne, M.-C. & Rouden, J. Asymmetric malonic and acetoacetic acid syntheses – a century of enantioselective decarboxylative protonations. Eur. J. Org. Chem. 5493–5506 (2008).

  5. Mohr, J. T., Nishimata, T., Behenna, D. C. & Stoltz, B. M. Catalytic enantioselective decarboxylative protonation. J. Am. Chem. Soc. 128, 11348–11349 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Marinescu, S. C., Nishimata, T., Mohr, J. T. & Stoltz, B. M. Homogeneous Pd-catalyzed enantioselective decarboxylative protonation. Org. Lett. 10, 1039–1042 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Morita, M. et al. Two methods for catalytic generation of reactive enolates promoted by a chiral poly Gd complex: application to catalytic enantioselective protonation reactions. J. Am. Chem. Soc. 131, 3858–3859 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Mitsuhashi, K., Ito, R., Arai, T. & Yanagisawa, A. Catalytic asymmetric protonation of lithium enolates using amino acid derivatives as chiral proton sources. Org. Lett. 8, 1721–1724 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. Poisson, T., Oudeyer, S., Dalla, V., Marsais, F. & Levacher, V. Straightforward organocatalytic enantioselective protonation of silyl enolates by means of Cinchona alkaloids and carbxylic acids. Synlett 2447–2450 (2008).

  10. Leow, D., Lin, S., Chittimalla, S. K., Fu, X. & Tan, C. ‑H. Enantioselective protonation catalyzed by a chiral bicyclic guanidine derivative. Angew. Chem. Int. Ed. 47, 5641–5645 (2008).

    Article  CAS  Google Scholar 

  11. Dai, X., Nakai, T., Romero, J. A. C. & Fu, G. C. Enantioselective synthesis of protected amines by the catalytic asymmetric addition of hydrazoic acid to ketenes. Angew. Chem. Int. Ed. 46, 4367–4369 (2007).

    Article  CAS  Google Scholar 

  12. Miyamoto, K. & Kourist, R. Arylmalonate decarboxylase—a highly selective bacterial biocatalyst with unknown function. Appl. Microbiol. Biotechnol. 100, 8621–8631 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Wilding, M., Goodall, M. & Micklefield, J. in Comprehensive Chirality 1st edn (eds H. Yamamoto & E. M. Carreira) 402–409 (Elsevier, 2012).

  14. Rueping, M., Kuenkel, A. & Atodiresei, I. Chiral Brønsted acids in enantioselective carbonyl activations − activation modes and applications. Chem. Soc. Rev. 40, 4539–4549 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Min, C. & Seidel, D. Asymmetric Brønsted acid catalysis with chiral carboxylic acids. Chem. Soc. Rev. 46, 5889–5902 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Akiyama, T. & Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev. 115, 9277–9306 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Maji, R., Mallojjala, S. C. & Wheeler, S. E. Chiral phosphoric acid catalysis: from numbers to insights. Chem. Soc. Rev. 47, 1142–1158 (2018).

    Article  PubMed  CAS  Google Scholar 

  18. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Huang, D., Xu, F., Lin, X. & Wang, Y. Highly enantioselective Pictet–Spengler reaction catalyzed by SPINOL phosphoric acids. Chem. Eur. J. 18, 3148–3152 (2012).

    Article  PubMed  CAS  Google Scholar 

  21. Okrasa, K. et al. Structure-guided directed evolution of alkenyl and arylmalonate decarboxylases. Angew. Chem. Int. Ed. 48, 7691–7694 (2009).

    Article  CAS  Google Scholar 

  22. Brunner, H. & Baur, M. A. α-Amino acid derivatives by enantioselective decarboxylation. Eur. J. Org. Chem. 2854–2862 (2010).

  23. Lin, X., Wang, L., Han, Z. & Chen, Z. Chiral spirocyclic phosphoric acids and their growing applications. Chin. J. Chem. 39, 802–824 (2021).

    Article  CAS  Google Scholar 

  24. Xu, F. et al. SPINOL-derived phosphoric acids: synthesis and application in enantioselective Friedel–Crafts reaction of indoles with imines. J. Org. Chem. 75, 8677–8680 (2018).

    Article  Google Scholar 

  25. Rahman, A. & Lin, X. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. Org. Biomol. Chem. 16, 4753–4777 (2018).

    Article  PubMed  CAS  Google Scholar 

  26. Messina, M. S. & Maynard, H. D. Modification of proteins using olefin metathesis. Mater. Chem. Front. 4, 1040–1051 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim, C. H., Axup, J. Y. & Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 17, 412–419 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Arntson, K. E. & Pomerantz, W. C. K. Protein-observed fluorine NMR: a bioorthogonal approach for small molecule discovery. J. Med. Chem. 59, 5158–5171 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Trimble, J. S. et al. A designed photoenzyme for enantioselective [2+2] cycloadditions. Nature 611, 709–714 (2022).

    Article  PubMed  CAS  Google Scholar 

  31. Sun, N. et al. Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature 611, 715–720 (2022).

    Article  PubMed  CAS  Google Scholar 

  32. Cheng, Z., Kuru, E., Sachdeva, A. & Vendrell, A. Fluorescent amino acids as versatile building blocks for chemical biology. Nat. Rev. Chem. 4, 275–290 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. Fujita, T. et al. Synthesis of a complete set of l-difluorophenylalanines, l-(F2)Phe, as molecular explorers for the CH/π interaction between peptide ligand and receptor. Tetrahedron Lett. 41, 923–927 (2000).

    Article  CAS  Google Scholar 

  34. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 99–102 (2002).

    Article  Google Scholar 

  36. Shaginian, A. et al. Design, synthesis, and evaluation of an α-helix mimetic library targeting protein–protein interactions. J. Am. Chem. Soc. 131, 5564–5572 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Durcik, M. et al. New N-phenylpyrrolamide DNA gyrase B inhibitors: optimization of efficacy and antibacterial activity. Eur. J. Med. Chem. 154, 117–132 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Walsh, P. J. & Kozlowski, M. C. in Fundamentals of Asymmetric Catalysis 330–374 (University Science Books, 2009).

  39. Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).

    Article  PubMed  CAS  Google Scholar 

  40. Horn, P. R., Mao, Y. & Head-Gordon, M. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies. J. Chem. Phys. 144, 114107 (2016).

    Article  PubMed  Google Scholar 

  41. Horn, P. R. & Head-Gordon, M. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions. J. Chem. Phys. 143, 114111 (2015).

    Article  PubMed  Google Scholar 

  42. Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 18, 23067–23079 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Qi, X., Kohler, D. G., Hull, K. L. & Liu, P. Energy decomposition analyses reveal the origins of catalyst and nucleophile effects on regioselectivity in nucleopalladation of alkenes. J. Am. Chem. Soc. 141, 11892–11904 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xi, Y. et al. Application of trimethylgermanyl-substituted bisphosphine ligands with enhanced dispersion interactions to copper-catalyzed hydroboration of disubstituted alkenes. J. Am. Chem. Soc. 142, 18213–18222 (2020).

    Article  PubMed  CAS  Google Scholar 

  45. Mao, Y. et al. Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO2 reduction catalysts. Chem. Sci. 12, 1398–1414 (2021).

    Article  CAS  Google Scholar 

  46. Sengupta, A., Li, B., Svatunek, D., Liu, F. & Houk, K. N. Cycloaddition reactivities analyzed by energy decomposition analyses and the frontier molecular orbital model. Acc. Chem. Res. 55, 2467–2479 (2022).

    Article  PubMed  CAS  Google Scholar 

  47. Emamian, S., Lu, T., Kruse, H. & Emamian, H. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms‐in‐molecules descriptors, binding energies, and energy components of symmetry‐adapted perturbation theory. J. Comput. Chem. 40, 2868–2881 (2019).

    Article  PubMed  CAS  Google Scholar 

  48. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. Origin of attraction and directionality of the π/π interaction: model chemistry calculations of benzene dimer interaction. J. Am. Chem. Soc. 124, 104–112 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. Carter-Fenk, K. & Herbert, J. M. Electrostatics does not dictate the slip-stacked arrangement of aromatic π–π interactions. Chem. Sci. 11, 6758–6765 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Hong Kong for a start-up fund, the National Natural Science Foundation of China (22201222, X.Q.), the National Key R&D Program of China (2022YFA1505100, X.Q.), the Fundamental Research Funds for the Central Universities (2042022kf1038, X.Q.) and the Research Grants Council of Hong Kong (17304523, Z.H.). We acknowledge funding support from the Laboratory for Synthetic Chemistry and Chemical Biology under the Health@InnoHK Program launched by the Innovation and Technology Commission, the Government of HKSAR. J. Yip and B. Yan are acknowledged for mass spectrometry and NMR spectroscopy, respectively. X.Q. acknowledges the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

Z.H. conceived and designed the project. W.-F.Z. carried out the experiments. W.-F.Z. and Z.H. analysed the experimental data. J.C. and X.Q. carried out the theoretical studies and analysed the data. All authors wrote the manuscript.

Corresponding authors

Correspondence to Xiaotian Qi or Zhongxing Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Tian Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, experimental procedures, product characterization data, and mechanistic studies.

Supplementary Data 1

Crystallographic data for compound (+)-6; CCDC reference 2206851.

Source data

Source Data Fig. 5a and d

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, WF., Chen, J., Qi, X. et al. Modular and diverse synthesis of amino acids via asymmetric decarboxylative protonation of aminomalonic acids. Nat. Chem. 15, 1672–1682 (2023). https://doi.org/10.1038/s41557-023-01362-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01362-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing