Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superstructural ordering in self-sorting coacervate-based protocell networks

Abstract

Bottom-up assembly of higher-order cytomimetic systems capable of coordinated physical behaviours, collective chemical signalling and spatially integrated processing is a key challenge in the study of artificial multicellularity. Here we develop an interactive binary population of coacervate microdroplets that spontaneously self-sort into chain-like protocell networks with an alternating sequence of structurally and compositionally dissimilar microdomains with hemispherical contact points. The protocell superstructures exhibit macromolecular self-sorting, spatially localized enzyme/ribozyme biocatalysis and interdroplet molecular translocation. They are capable of topographical reconfiguration using chemical or light-mediated stimuli and can be used as a micro-extraction system for macroscale biomolecular sorting. Our methodology opens a pathway towards the self-assembly of multicomponent protocell networks based on selective processes of coacervate droplet–droplet adhesion and fusion, and provides a step towards the spontaneous orchestration of protocell models into artificial tissues and colonies with ordered architectures and collective functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spontaneous assembly, spatial segregation, self-organization and macroscopic sorting of coacervate-based protocell networks.
Fig. 2: Protocell network components.
Fig. 3: Protocell network assembly.
Fig. 4: Biomolecular organization and processing in protocell networks.
Fig. 5: Stimuli-induced reconfiguration in protocell networks.
Fig. 6: Protocell-network-mediated biomolecular extraction and macroscale sorting.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information, and from the corresponding authors on reasonable request. Source Data are provided with this paper.

References

  1. Buddingh, B. C., Elzinga, J. & van Hest, J. C. M. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat. Commun. 11, 1652 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Booth, M. J., Schild, V. R., Graham, A. D., Olof, S. N. & Bayley, H. Light-activated communication in synthetic tissues. Sci. Adv. 2, e1600056 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Tian, L., Li, M., Patil, A. J., Drinkwater, B. W. & Mann, S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat. Commun. 10, 3321 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Gao, N. et al. Chemical-mediated translocation in protocell-based microactuators. Nat. Chem. 13, 868–879 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Adamala, K. P., Engelhart, A. E. & Szostak, J. W. Collaboration between primitive cell membranes and soluble catalysts. Nat. Commun. 7, 11041 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharya, A., Cho, C. J., Brea, R. J. & Devaraj, N. K. Expression of fatty acyl-CoA ligase drives one-pot de novo synthesis of membrane-bound vesicles in a cell-free transcription–translation system. J. Am. Chem. Soc. 143, 11235–11242 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Saha, R., Verbanic, S. & Chen, I. A. Lipid vesicles chaperone an encapsulated RNA aptamer. Nat. Commun. 9, 2313 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Marguet, M., Bonduelle, C. & Lecommandoux, S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem. Soc. Rev. 42, 512–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Peters, R. J., Louzao, I. & van Hest, J. C. M. From polymeric nanoreactors to artificial organelles. Chem. Sci. 3, 335–342 (2012).

    Article  CAS  Google Scholar 

  10. Huang, X. et al. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat. Commun. 4, 2239 (2013).

    Article  ADS  PubMed  Google Scholar 

  11. Li, M., Harbron, R. L., Weaver, J. V., Binks, B. P. & Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem. 5, 529–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Torre, P., Keating, C. D. & Mansy, S. S. Multiphase water-in-oil emulsion droplets for cell-free transcription-translation. Langmuir 30, 5695–5699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, H., Du, X., Meng, X., Qiu, D. & Qiao, Y. A three-tiered colloidosomal microreactor for continuous flow catalysis. Nat. Commun. 12, 6113 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukwaya, V. et al. Lectin-glycan-mediated nanoparticle docking as a step toward programmable membrane catalysis and adhesion in synthetic protocells. ACS Nano. 14, 7899–7910 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Mukwaya, V. et al. Programmable membrane-mediated attachment of synthetic virus-like nanoparticles on artificial protocells for enhanced immunogenicity. Cell Rep. Phys. Sci. 2, 100291 (2021).

    Article  CAS  Google Scholar 

  16. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Yewdall, N. A., André, A. A., Lu, T. & Spruijt, E. Coacervates as models of membraneless organelles. Curr. Opin. Colloid Interface Sci. 52, 101416 (2021).

    Article  CAS  Google Scholar 

  18. Liu, S. et al. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Pir Cakmak, F., Marianelli, A. M. & Keating, C. D. Phospholipid membrane formation templated by coacervate droplets. Langmuir 37, 10366–10375 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Gao, N., Xu, C., Yin, Z., Li, M. & Mann, S. Triggerable protocell capture in nanoparticle-caged coacervate microdroplets. J. Am. Chem. Soc. 144, 3855–3862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. et al. Giant coacervate vesicles as an integrated approach to cytomimetic modeling. J. Am. Chem. Soc. 143, 2866–2874 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem. 6, 295–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dubuc, E. et al. Cell-free microcompartmentalised transcription-translation for the prototyping of synthetic communication networks. Curr. Opin. Biotechnol. 58, 72–80 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakashima, K. K., van Haren, M. H., André, A. A., Robu, I. & Spruijt, E. Active coacervate droplets are protocells that grow and resist Ostwald ripening. Nat. Commun. 12, 3819 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3, 775–781 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Elani, Y., Law, R. V. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Iglesias-Artola, J. M. et al. Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. Nat. Chem. 14, 407–416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donau, C. et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson, D. A., Nolte, R. J. & Van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, B., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10, 1154–1163 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Rodríguez-Arco, L., Li, M. & Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 16, 857–863 (2017).

    Article  ADS  PubMed  Google Scholar 

  35. Qiao, Y., Li, M., Booth, R. & Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem. 9, 110–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Qiao, Y., Li, M., Qiu, D. & Mann, S. Response‐retaliation behavior in synthetic protocell communities. Angew. Chem. Int. Ed. 131, 17922–17927 (2019).

    Article  ADS  Google Scholar 

  37. Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alcinesio, A. et al. Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues. Nat. Commun. 11, 2105 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Booth, M. J., Restrepo Schild, V., Box, S. J. & Bayley, H. Light-patterning of synthetic tissues with single droplet resolution. Sci. Rep. 7, 9315 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Tian, L. et al. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat. Commun. 7, 13068 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, Z., Wei, J., Sobolev, Y. I. & Grzybowski, B. A. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature 553, 313–318 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Ramsay, K., Levy, J., Gobbo, P. & Elvira, K. S. Programmed assembly of bespoke prototissues on a microfluidic platform. Lab. Chip. 21, 4574–4585 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Deshpande, S. et al. Spatiotemporal control of coacervate formation within liposomes. Nat. Commun. 10, 1800 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Gobbo, P. et al. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater. 17, 1145–1153 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Galanti, A. et al. A floating mold technique for the programmed assembly of protocells into protocellular materials capable of non‐equilibrium biochemical sensing. Adv. Mater. 33, 2100340 (2021).

    Article  CAS  Google Scholar 

  48. Liu, J. et al. Hydrogel‐immobilized coacervate droplets as modular microreactor assemblies. Angew. Chem. Int. Ed. 59, 6853–6859 (2020).

    Article  CAS  Google Scholar 

  49. McMullen, A. et al. Self-assembly of emulsion droplets through programmable folding. Nature 610, 502–506 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Gong, J., Tsumura, N., Sato, Y. & Takinoue, M. Computational DNA droplets recognizing miRNA sequence inputs based on liquid–liquid phase separation. Adv. Funct. Mater. 32, 2202322 (2022).

    Article  CAS  Google Scholar 

  51. Funasaki, N. & Neya, S. Multiple complexation of didecyldimethylammonium bromide and cyclodextrins deduced from electromotive force measurements. Langmuir 16, 5343–5346 (2000).

    Article  CAS  Google Scholar 

  52. Mu, W. et al. Membrane-confined liquid-liquid phase separation toward artificial organelles. Sci. Adv. 7, eabf9000 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fraccia, T. P. & Jia, T. Z. Liquid crystal coacervates composed of short double-stranded DNA and cationic peptides. ACS Nano. 14, 15071–15082 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Jing, H. et al. Fission and internal fusion of protocell with membraneless ‘organelles’ formed by liquid–liquid phase separation. Langmuir 36, 8017–8026 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu, T. & Spruijt, E. Multiphase complex coacervate droplets. J. Am. Chem. Soc. 142, 2905–2914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaur, T. et al. Sequence-encoded and composition-dependent protein–RNA interactions control multiphasic condensate morphologies. Nat. Commun. 12, 872 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katzir, I., Haimov, E. & Lampel, A. Tuning the dynamics of viral-factories-inspired compartments formed by peptide–RNA liquid–liquid phase separation. Adv. Mater. 34, 2206371 (2022).

    Article  CAS  Google Scholar 

  59. Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    Article  ADS  CAS  Google Scholar 

  60. Rego, L. G. C. & Bortolini, G. Modulating the photoisomerization mechanism of semiconductor-bound azobenzene-functionalized compounds. J. Phys. Chem. C 123, 5692–5698 (2019).

    Article  CAS  Google Scholar 

  61. Benmensour, M. A. et al. Azobased iminopyridine ligands and their rhenium metal complexes: syntheses, spectroscopic, transcis photoisomerization and theoretical studies. J. Photoch. Photobio. A 368, 78–84 (2019).

    Article  CAS  Google Scholar 

  62. Klamt, A. & Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805 (1993).

    Article  Google Scholar 

  63. Stefanovich, E. V. & Truong, T. N. Optimized atomic radii for quantum dielectric continuum solvation models. Chem. Phys. Lett. 244, 65–74 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB0480000) to Y.Q., the National Natural Science Foundation of China (grant nos. 22272183 and 22072159 to Y.Q., and 22172007 to Y.L.), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (grant no. 52221006) to Y.L., and the Fundamental Research Funds for the Central Universities (grant nos. buctrc202015 and PT2208 to Y.L). S.M. was funded by the ERC Advanced Grant Scheme (grant no. EC-2016-674 ADG 740235).

Author information

Authors and Affiliations

Authors

Contributions

W.M. and L.J. performed the experiments and analysed the data. M.Z. and J.W. performed computational experiments. Y.Q. led the project. Y.L., S.M. and Y.Q. conceived, designed and supervised the study, analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yiyang Lin, Stephen Mann or Yan Qiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video captions 1–4, materials and methods, Figs. 1–33, Tables 1–3 and references.

Supplementary Video 1

CLSM video showing the assembly of chain-like protocell networks comprising an alternating interconnected sequence of Nile-red-loaded DDAB/trans-AzoAsp2 (red fluorescence) and HPTS-loaded PDDA/trans-AzoAsp2 (green fluorescence) coacervate droplets are observed. Video is shown at ×540 of real-time speed at 3 fps. Total duration of recording in real time is 60 min; scale bar, 13 μm.

Supplementary Video 2

CLSM video showing HRP/H2O2-mediated peroxidation in coacervate-based protocell networks. Resorufin (red fluorescence) is produced and retained specifically within the DDAB/trans-AzoAsp2 domains. Video is shown at ×100 of real-time speed at 5 fps. Total duration of recording in real time is 600 s; scale bar, 5 μm.

Supplementary Video 3

CLSM video showing transfer of TAMRA-ssDNA from a DDAB/trans-AzoAsp2 droplet (red fluorescence at t = 0) to an adjacent PDDA/trans-AzoAsp2 domain (no fluorescence at t = 0) located in the same protocell chain. Video is shown at ×5 of real-time speed at 10 fps. Total duration of recording in real time is 38.5 s; scale bar, 10 μm.

Supplementary Video 4

Optical microscopy video showing UV-induced reconfiguration of protocell networks due to light-mediated trans-to-cis isomerization of azobenzene in ordered chains of DDAB/trans-AzoAsp2 and PDDA/trans-AzoAsp2 droplets. UV source; 325 nm < λ < 375 nm, 120 W short-arc Hg light. Video is shown at ×75 of real-time speed at 5 fps. Total duration of recording in real time is 10 min; scale bar, 5 μm.

Source data

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 6

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, W., Jia, L., Zhou, M. et al. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat. Chem. 16, 158–167 (2024). https://doi.org/10.1038/s41557-023-01356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01356-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing