Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereocontrolled access to thioisosteres of nucleoside di- and triphosphates

Abstract

Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry; however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered by their rapid in vivo metabolism. Although a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. This operationally simple approach provides access to pure stereoisomers of nucleoside α-thiodiphosphates and α-thiotriphosphates, as well as symmetrical or unsymmetrical dinucleoside thiodiphosphates and thiotriphosphates (including RNA cap reagents). We demonstrate that ligand–receptor interactions can be dramatically influenced by P-stereochemistry, showing that such thioisosteric replacements can have profound effects on the potency and stability of lead candidates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiral phosphorothioate isosteres of nucleoside di- and triphosphates.
Fig. 2: Reagent innovation for stereocontrolled thio-di- and triphosphate transfer.
Fig. 3: Biological study of nucleotide thioisosteres.

Similar content being viewed by others

Data availability

All data generated or analysed during this study (including experimental procedures, optimization details and spectral data for all new compounds) is available within the paper and Supplementary Information.

X-ray crystallographic data for compound (−)-11 have been deposited with the Cambridge Crystallographic Data Centre (CCDC deposition no. 2172688). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Roy, B., Depaix, A., Périguad, C. & Peyrottes, S. Recent trends in nucleotide synthesis. Chem. Rev. 116, 7854–7897 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry 7th edn (W. H. Freeman, 2017).

  3. Vetter, I. R. & Wittinghofer, A. Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q. Rev. Biophys. 32, 1–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Erb, L. & Weisman, G. A. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip. Rev. Membr. Transp. Signal. 1, 789–803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vosberg, H. P. & Eckstein, F. Effect of deoxynucleoside phosphorothioates incorporated in DNA on cleavage by restriction enzymes. J. Biol. Chem. 257, 6595–6599 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Crooke, S. T. Antisense Research and Application (Springer, 1998).

  7. Wickstrom, E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J. Biochem. Biophys. Methods. 13, 97–102 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Purcell, J. & Hengge, A. C. The thermodynamics of phosphate versus phosphorothioate ester hydrolysis. J. Org. Chem. 70, 8437–8442 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nadel, Y. et al. Highly potent and selective ectonucleotide pyrophosphatase/phosphodiesterase I inhibitors based on an adenosine 5′-(α or γ)-thio-(α,β- or β,γ)-methylenetriphosphate scaffold. J. Med. Chem. 57, 4677–4691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, S.-Y. & Müller, C. E. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. Medchemcomm 8, 823–840 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kato, K. et al. Structural insights into cGAMP degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 9, 4424 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Jacobson, K. A. et al. Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5′-triphosphate analogues at the human P2Y2 and P2Y4 receptors. Biochem. Pharmacol. 71, 540–549 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kowalska, J. et al. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14, 1119–1131 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wojtczak, B. A. et al. 5′-Phosphorothiolate dinucleotide cap analogues: reagents for messenger RNA modification and potent small-molecular inhibitors of decapping enzymes. J. Am. Chem. Soc. 140, 5987–5999 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Z., Sismour, A. M. & Benner, S. A. Nucleoside α-thiotriphospates, polymerases and the exonuclease III analysis of oligonucleotides containing phosphorothiote linkages. Nucleic Acids Res. 35, 3118–3127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McIntosh, J. A. et al. A kinase-cGAS cascade to synthesize a therapeutic STING activator. Nature 603, 439–444 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ludwig, J. & Eckstein, F. Synthesis of nucleoside 5′-O-(1,3-dithiotriphosphates) and 5′-O-(1,1-dithiotriphosphates). J. Org. Chem. 56, 1777–1783 (1991).

    Article  CAS  Google Scholar 

  19. Strenkowska, M., Wanat, P., Ziemniak, M., Jemielity, J. & Kowalska, J. Preparation of synthetically challenging nucleotides using cyanoethyl P-imidazolides and microwaves. Org. Lett. 14, 4782–4785 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Misiura, K., Szymanowicz, D. & Stec, W. J. Synthesis of nucleoside α-thiotriphosphates via an oxathiophospholane approach. Org. Lett. 7, 2217–2220 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Li, P. et al. Synthesis of α-P-modified nucleoside diphopshates with ethylenediamine. J. Am. Chem. Soc. 127, 16782–16783 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Connolly, B. A., Romaniuk, P. J. & Eckstein, F. Synthesis and characterization of diastereoisomers of guanosine 5′-O-(1-thiotriphosphate) and 5′-O-(2-thiotriphosphate). Biochemistry 21, 1983–1989 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Eckstein, F. & Gindl, H. Synthesis of nucleoside 5′-polyphosphorothioates. Biochim. Biophys. Acta 149, 35–40 (1967).

    Article  CAS  PubMed  Google Scholar 

  24. Guga, P. & Tomaszewska, A. Unexpected loss of stereoselectivity in ring-opening reaction of 2-alkoxy-2-thio-1,3,2-oxathiophospholanes with a pyrophosphate anion. Chirality 27, 115–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Dahnke, T., Jiang, R. T. & Tsai, M. D. Mechanism of adenylate kinase. 12. Prediction and demonstration of enhancement of phosphorus stereospecifity by site-directed mutagenesis. J. Am. Chem. Soc. 113, 9388–9389 (1991).

    Article  CAS  Google Scholar 

  26. Knouse, K. et al. Unlocking P(V): reagents for chiral phosphorothioate synthesis. Science 361, 1234–1238 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, Y. et al. A P(V) platform for oligonucleotide synthesis. Science 373, 1265–1270 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knouse, K. W. et al. Nature chose phosphates and chemists should too: how emerging P(V) methods can augment existing strategies. ACS Cent. Sci. 7, 1473–1485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, B. et al. P(III) vs P(V): a P(V) reagent for thiophosphoramidate linkages and application to an asymmetric synthesis of a cyclic dinucleotide STING agonist. J. Org. Chem. 87, 1934–1940 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Liao, J.-Y., Bala, S., Ngor, A. K., Yik, E. J. & Chaput, J. C. P(V) reagents for the scalable synthesis of natural and modified nucleoside triphosphates. J. Am. Chem. Soc. 141, 13286–13289 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Cremosnik, G. S., Hofer, A. & Jessen, H. J. Iterative synthesis of nucleoside oligophosphates with phosphoroamidites. Angew. Chem. Int. Ed. 53, 286–289 (2014).

    Article  CAS  Google Scholar 

  32. Ociepa, M. et al. Mild and chemoselective phosphorylation of alcohols using a Ψ-reagent. Org. Lett. 23, 9337–9342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ludwig, J. & Eckstein, F. Rapid and efficient synthesis of nucleoside 5′-O-(1-thiotriphosphates), 5′-triphosphates and 2′,3′-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one. J. Org. Chem. 54, 631–635 (1989).

    Article  CAS  Google Scholar 

  34. Masawra, A. et al. Synthesis and stereochemical assignment of crypto-optically active 2H6-neopentane. Angew. Chem. Int. Ed. 54, 13106–13109 (2015).

    Article  Google Scholar 

  35. Roucairol, C. et al. Design, synthesis and studies of triphosphate analogues for the production of anti AZT-TP antibodies. Bioorg. Med. Chem. Lett. 20, 987–990 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Cusack, N. J. & Hourani, S. M. O. Effects of RP and SP diastereoisomers of adenosine 5′-O-(1-thiodiphosphate) on human platelets. Br. J. Pharmacol. 73, 409–412 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, R. A., Desaubry, L. & Shoshani, I. Method and compound for the inhibition of adenylyl cyclase. US patent US5795756A (1998).

  38. Ecke, D., Fischer, B. & Reiser, G. Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br. J. Pharmacol. 155, 1250–1255 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Besada, P. et al. Structure-activity relationships of uridine 5′-diphosphate analogues at the human P2Y6 receptor. J. Med. Chem. 49, 5532–5543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shuman, S. DNA ligases: progress and prospects. J. Biol. Chem. 284, 17365–17369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Péregrin, P. Purinergic Signaling. Methods in Molecular Biology, Vol. 2041 (Humana, 2019).

  42. Yegutkin, G. G. & Boison, D. ATP and adenosine metabolism in cancer: exploitation of therapeutic gain. Pharmacol. Rev. 74, 797–822 (2022).

    Article  PubMed  Google Scholar 

  43. Kiselev, E. et al. Exploring a 2-naphthoic acid template for the structure-based design of P2Y14 receptor antagonist molecular probes. ACS Chem. Biol. 9, 2833–2842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hyjek-Składanowska, M. et al. Origins of the increased affinity of phosphorothioate-modified therapeutic nucleic acids for proteins. J. Am. Chem. Soc. 142, 7456–7468 (2020).

    Article  PubMed  Google Scholar 

  45. Schäkel, L. et al. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39—a promising target for cancer immunotherapy. J. Immunother. Cancer 10, e004660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang, B. CD73: a novel target for cancer immunotherapy. Cancer Res. 70, 6407–6411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuhn, A. N. et al. Phosphorothiate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 17, 961–971 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Romagnoli, A. et al. Control of the eIF4E activity: structural insights and pharmacological implications. Cell. Mol. Life Sci. 78, 6869–6885 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Dijk, E. et al. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915–6924 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to D.-H. Huang and L. Pasternack (Scripps Research) for NMR spectroscopic assistance, B. Sanchez, Q.N. Wong and J. Chen for HRMS assistance, M. Gembicky for X-ray crystallographic analysis, A. Bauer, M. Meanwell, M. Bielecki, A.F. Garrido Castro, C. He, Y. Kawamata and S. Gnaim for insightful discussions, and T.E.-H. Ewing for analytical assistance. Financial support for this work was provided by Bristol-Myers Squibb. M.O. was supported by the Polish National Agency for Academic Exchange (Bekker programme no. PPN/BEK/2020/1/00111/U/00001). H.-J.Z. was supported by Shanghai Institute of Organic Chemistry Fellowship. M.N. thanks the Council for Higher Education, Fulbright Israel. K.A.J thanks the NIH, NIDDK, for funding (ZIADK031116). C.E.M. and co-workers were funded by the Deutsche Forschungsgemeinschaft (SFB 1328). J.J. and co-workers were supported by the Polish National Science Centre (grant no. 2019/33/B/ST4/01843). Bristol Myers Squibb assisted with the conceptualization of this work. The other funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.-J.Z., M.O., M.N., M.A.S., M.D.E. and P.S.B. conceptualized the study. H.-J.Z., M.O., M.N. and B.Z. developed the reagents. H.-J.Z., M.O. and M.N. conducted optimization and scope experiments. H.-J.Z., M.O., M.N. and Z.L. analysed the data. H.B., J.N., S.M., H.A.-H., B.B. and C.E.M. designed and performed biological experiments on the P2Y13 and P2X receptors and ecto-enzymes. S.A.L., V.S. and K.A.J. designed and performed biological evaluation on the P2Y6 and P2Y14 receptors. V.S. and K.A.J. performed molecular modelling. O.P., J.K. and J.J. designed and performed CleanCap thioisosteres biophysical studies. H.-J.Z., M.O., M.N., C.E.M., K.A.J., J.K., J.J. and P.S.B. wrote the manuscript. P.S.B., M.A.S. and M.D.E. acquired funding. P.S.B. administered and supervised this work.

Corresponding authors

Correspondence to Kenneth A. Jacobson, Christa E. Müller, Joanna Kowalska, Jacek Jemielity or Phil S. Baran.

Ethics declarations

Competing interests

A provisional US patent application on this work has been filed by Bristol-Myers Squibb (application no. 63/376,249), with H.-J.Z., M.O., M.N., B.Z., M.A.S., M.D.E. and P.S.B. listed as inventors. The patent covers the synthesis of new reagents and their applications to the synthesis of nucleotide thioisosteres. P.S.B. is a paid consultant for Bristol Myers Squibb. B.Z., Z.L., M.A.S. and M.D.E. are employees of Bristol Myers Squibb.

Peer review

Peer review information

Nature Chemistry thanks Zlatko Janeba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and methods, Supplementary Figs. 1–47, Tables 1–18 and spectral data for all new compounds.

Reporting Summary

Supplementary Data

Crystallographic data for compound (−)-11; CCDC reference 2172688.

Source data

Source Data Fig. 3

Unprocessed numerical data for graphs 3c, 3d, 3g, 3h, 3i, 3j.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HJ., Ociepa, M., Nassir, M. et al. Stereocontrolled access to thioisosteres of nucleoside di- and triphosphates. Nat. Chem. 16, 249–258 (2024). https://doi.org/10.1038/s41557-023-01347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01347-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing