Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation

Abstract

1,2-Azaborines represent a unique class of benzene isosteres that have attracted interest for developing pharmaceuticals with better potency and bioavailability. However, it remains a long-standing challenge to prepare monocyclic 1,2-azaborines, particularly multi-substituted ones, in an efficient and modular manner. Here we report a straightforward method to directly access diverse multi-substituted 1,2-azaborines from readily available cyclopropyl imines/ketones and dibromoboranes under relatively mild conditions. The reaction is scalable, shows a broad substrate scope, and tolerates a range of functional groups. The utility of this method is demonstrated in the concise syntheses of BN isosteres of a PD-1/PD-L1 inhibitor and pyrethroid insecticide, bifenthrin. Combined experimental and computational mechanistic studies suggest that the reaction pathway involves boron-mediated cyclopropane ring-opening and base-mediated elimination, followed by an unusual low-barrier 6π-electrocyclization accelerated by the BN/CC isomerism. This method is anticipated to find applications for the synthesis of BN-isostere analogues in medicinal chemistry, and the mechanistic insights gained here may guide developing other boron-mediated electrocyclizations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic methods to access 1,2-azaborines.
Fig. 2: Proposed strategy and reaction discovery.
Fig. 3: Derivatization and synthetic applications.
Fig. 4: Preliminary mechanistic studies.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structure of 3ay have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. 2150659. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Subbaiah, M. A. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Campbell, P. G., Marwitz, A. J. V. & Liu, S.-Y. Recent advances in azaborine chemistry. Angew. Chem. Int. Ed. 51, 6074–6092 (2012).

    Article  CAS  Google Scholar 

  3. Giustra, Z. X. & Liu, S.-Y. The state of the art in azaborine chemistry: new synthetic methods and applications. J. Am. Chem. Soc. 140, 1184–1194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhattacharjee, A., Davies, G. H., Saeednia, B., Wisniewski, S. R. & Molander, G. A. Selectivity in the elaboration of bicyclic borazarenes. Adv. Synth. Catal. 363, 2256–2273 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Abengózar, A., García-García, P., Fernández-Rodríguez, M. A., Sucunza, D. & Vaquero, J. J. Recent developments in the chemistry of BN-aromatic hydrocarbons. Adv. Heterocycl. Chem. 135, 197–259 (2021).

    Article  Google Scholar 

  6. Liu, Z. & Marder, T. B. B-N versus C-C: how similar are they? Angew. Chem. Int. Ed. 47, 242–244 (2008).

    Article  CAS  Google Scholar 

  7. Zhao, P., Nettleton, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. Medicinal chemistry profiling of monocyclic 1,2‐azaborines. ChemMedChem 12, 358–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baldock, C. et al. A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274, 2107–2110 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Davis, M. C., Franzblau, S. G. & Martin, A. R. Syntheses and evaluation of benzodiazaborine compounds against M. tuberculosis H37Rv in vitro. Bioorg. Med. Chem. Lett. 8, 843–846 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Grassberger, M. A., Turnowsky, F. & Hildebrandt, J. Preparation and antibacterial activities of new 1,2,3-diazaborine derivatives and analogs. J. Med. Chem. 27, 947–953 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Baker, S. J. et al. Therapeutic potential of boron-containing compounds. Future Med. Chem. 1, 1275–1288 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Vlasceanu, A., Jessing, M. & Kilburn, J. P. BN/CC isosterism in borazaronaphthalenes towards phosphodiesterase 10A (PDE10A) inhibitors. Bioorg. Med. Chem. 23, 4453–4461 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Marwitz, A. J., Matthews, B. W. & Liu, S.-Y. Boron mimetics: 1,2-dihydro-1,2-azaborines bind inside a nonpolar cavity of T4 lysozyme. Angew. Chem. Int. Ed. 48, 6817–6819 (2009).

    Article  Google Scholar 

  14. Rombouts, F. J., Tovar, F., Austin, N., Tresadern, G. & Trabanco, A. A. Benzazaborinines as novel bioisosteric replacements of naphthalene: propranolol as an example. J. Med. Chem. 58, 9287–9295 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Lamm, A. N. & Liu, S.-Y. How stable are 1,2-dihydro-1,2-azaborines toward water and oxygen? Mol. Biosyst. 5, 1303–1305 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Abbey, E. R., Lamm, A. N., Baggett, A. W., Zakharov, L. N. & Liu, S.-Y. Protecting group-free synthesis of 1,2-azaborines: a simple approach to the construction of BN-benzenoids. J. Am. Chem. Soc. 135, 12908–12913 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Dewar, M. J. S. & Marr, P. A. A derivative of borazarene. J. Am. Chem. Soc. 84, 3782 (1962).

    Article  Google Scholar 

  18. White, D. G. 2-Phenyl-2,1-borazarene and derivatives of 1,2-azaboracycloalkanes. J. Am. Chem. Soc. 85, 3634–3636 (1963).

    Article  CAS  Google Scholar 

  19. Ashe, A. J. & Fang, X. A synthesis of aromatic five-and six-membered B-N heterocycles via ring closing metathesis. Org. Lett. 2, 2089–2091 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Baggett, A. W., Vasiliu, M., Li, B., Dixon, D. A. & Liu, S. Y. Late-stage functionalization of 1,2-dihydro-1,2-azaborines via regioselective iridium-catalyzed C-H borylation: the development of a new N,N-bidentate ligand scaffold. J. Am. Chem. Soc. 137, 5536–5541 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Braunschweig, H., Hörl, C., Mailänder, L., Radacki, K. & Wahler, J. Antiaromaticity to aromaticity: from boroles to 1,2‐azaborinines by ring expansion with azides. Chem. Eur. J. 20, 9858–9861 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Schäfer, M. et al. Regioselective catalytic and stepwise routes to bulky, functional‐group‐appended, and luminescent 1,2‐azaborinines. Chem. Eur. J. 22, 8603–8609 (2016).

    Article  PubMed  ADS  Google Scholar 

  23. Heß, M., Krummenacher, I., Dellermann, T. & Braunschweig, H. Rhodium‐mediated stoichiometric synthesis of mono‐, bi‐ and bis‐1,2‐azaborinines: 1‐rhoda‐3,2‐azaboroles as reactive precursors. Chem. Eur. J. 27, 9503–9507 (2021).

    Article  PubMed  Google Scholar 

  24. Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 372, 175–182 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C-C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. McConnell, C. R. & Liu, S. Y. Late-stage functionalization of BN-heterocycles. Chem. Soc. Rev. 48, 3436–3453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pan, J., Kampf, J. W. & Ashe, A. J. Electrophilic aromatic substitution reactions of 1,2-dihydro-1,2-azaborines. Org. Lett. 9, 679–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Abengózar, A. et al. Synthesis, optical properties and regioselective functionalization of 4a-aza-10a-boraphenanthrene. Org. Lett. 19, 3458–3461 (2017).

    Article  PubMed  Google Scholar 

  29. Compton, J. S., Saeednia, B., Kelly, C. B. & Molander, G. A. 3-Boryl-2,1-borazaronaphthalene: umpolung reagents for diversifying naphthalene isosteres. J. Org. Chem. 83, 9484–9491 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guzik, K. et al. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Molecules 24, 2071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ying, J. et al. Convenient palladium-catalyzed reductive carbonylÿation of aryl bromides under gas-free conditions. Eur. J. Org. Chem. 2018, 2780–2783 (2018).

    Article  CAS  ADS  Google Scholar 

  32. Hougard, J. M., Duchon, S., Zaim, M. & Guillet, P. Bifenthrin: a useful pyrethroid insecticide for treatment of mosquito nets. J. Med. Entomol. 39, 526–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y., Puig de la Bellacasa, R., Li, B., Cuenca, A. B. & Liu, S. Y. The versatile reaction chemistry of an α-boryl diazo compound. J. Am. Chem. Soc. 143, 14059–14064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baggett, A. W. & Liu, S. Y. A boron protecting group strategy for 1,2-azaborines. J. Am. Chem. Soc. 139, 15259–15264 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stevens, R. V. General methods of alkaloid synthesis. Acc. Chem. Res. 10, 193–198 (1977).

    Article  CAS  Google Scholar 

  36. Dewar, M. J. S. & Dietz, R. New heteroaromatic compounds. Part III. 2,1-Borazaro-naphthalene (1,2-dihydro-1-aza-2-boranaphthalene). J. Chem. Soc. 1959, 2728–2730 (1959).

    Article  Google Scholar 

  37. Davies, G. H., Zhou, Z. Z., Jouffroy, M. & Molander, G. A. Method for accessing nitrogen-containing, B-heteroaryl-substituted 2,1-borazaronaphthalenes. J. Org. Chem. 82, 549–555 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, X., Wu, P., Li, J. & Cui, C. Synthesis of 1,2-borazaronaphthalenes from imines by base-promoted borylation of C-H bond. J. Org. Chem. 80, 3737–3744 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Beaudry, C. M., Malerich, J. P. & Trauner, D. Biosynthetic and biomimetic electrocyclizations. Chem. Rev. 105, 4757–4778 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Qin, P. et al. Transition-metal catalysis of triene 6π electrocyclization: the π-complexation strategy realized. Angew. Chem. Int. Ed. 59, 17958–17965 (2020).

    Article  CAS  Google Scholar 

  41. Guo, Q., Liu, L., Fu, Y. & Yu, T. How to promote sluggish electrocyclization of 1,3,5-hexatrienes by captodative substitution. J. Org. Chem. 71, 6157–6164 (2006).

    Article  PubMed  Google Scholar 

  42. Epiotis, N. D. The theory of pericyclic reactions. Angew. Chem. Int. Ed. 13, 751–780 (1974).

    Article  Google Scholar 

  43. Woodward, R. B. & Hoffmann, R. Stereochemistry of electrocyclic reactions. J. Am. Chem. Soc. 87, 395–397 (1965).

    Article  CAS  Google Scholar 

  44. Kukier, G., Turlik, A., Xue, X. & Houk, K. N. Violations. How nature circumvents the Woodward-Hoffmann rules and promotes the forbidden conrotatory 4n + 2 electron electrocyclization of Prinzbach’s vinylogous sesquifulvalene. J. Am. Chem. Soc. 143, 21694–21704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the University of Chicago, NIGMS (1R21GM144048-01, G.D. and R35GM128779, P.L.) and the National Science Foundation (CHE-1764328, K.N.H.). H.L. acknowledges a Suzuki Postdoctoral Fellowship from the University of Chicago. V. Rawal is thanked for thoughtful discussions. X. Liu is acknowledged for X-ray crystallography. DFT calculations were performed at the Center for Research Computing at the University of Pittsburgh and with supercomputer resources at NSF XSEDE. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and G.D. conceived and designed the experiments. H.L., Z.C. and Y.W. performed experiments. T.H.T., G.A.K., A.T., K.N.H. and P.L. designed and conducted the DFT calculations. H.L., T.H.T., K.N.H., P.L. and G.D. wrote the manuscript. P.L. and G.D. directed the research.

Corresponding authors

Correspondence to K. N. Houk, Peng Liu or Guangbin Dong.

Ethics declarations

Competing interests

A patent application has been filed (applicant: University of Chicago; name of inventor(s): Guangbin Dong, Hairong Lyu, Zhijie Chen, Yifei Wu; application no., 63/376,889; status of application, pending; specific aspect of manuscript covered in patent application, ‘New azaborine structures’). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Michael Lo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Table 1, experimental details, computational details, data and spectra.

Supplementary Data 1

Crystallographic data for compound 3ay; CCDC reference 2150659.

Supplementary Data 2

DFT xyz coordinates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, H., Tugwell, T.H., Chen, Z. et al. Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation. Nat. Chem. 16, 269–276 (2024). https://doi.org/10.1038/s41557-023-01343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01343-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing