Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solid-state nanopores towards single-molecule DNA sequencing

Abstract

Nanopore DNA sequencing offers a new paradigm owing to its extensive potential for long-read, high-throughput detection of nucleotide modification and direct RNA sequencing. Given the remarkable advances in protein nanopore sequencing technology, there is still a strong enthusiasm in exploring alternative nanopore-sequencing techniques, particularly those based on a solid-state nanopore using a semiconductor material. Since solid-state nanopores provide superior material robustness and large-scale integrability with on-chip electronics, they have the potential to surpass the limitations of their biological counterparts. However, there are key technical challenges to be addressed: the creation of an ultrasmall nanopore, fabrication of an ultrathin membrane, control of the ultrafast DNA speed and detection of four nucleotides. Extensive research efforts have been devoted to resolving these issues over the past two decades. In this review, we briefly introduce recent updates regarding solid-state nanopore technologies towards DNA sequencing. It can be envisioned that emerging technologies will offer a brand new future in DNA-sequencing technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345–53.

    Article  CAS  PubMed  Google Scholar 

  2. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    Article  CAS  PubMed  Google Scholar 

  3. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008;26:1146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat Biotechnol. 2016;34:518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 1996;93:13770–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang S, Zhao Z, Haque F, Guo P. Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis. Curr Opin Biotechnol. 2018;51:80–9.

    Article  CAS  PubMed  Google Scholar 

  7. Editorial. The long view on sequencing. Nat Biotechnol. 2018;36:287.

    Article  CAS  Google Scholar 

  8. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG, et al. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun. 2019;10:754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407–10.

    Article  CAS  PubMed  Google Scholar 

  11. Dekker C. Solid-state nanopores. Nat Nanotechnol. 2007;2:209–15.

    Article  CAS  PubMed  Google Scholar 

  12. Lindsay S. The promises and challenges of solid-state sequencing. Nat Nanotechnol. 2016;11:109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Ion-beam sculpting at nanometre length scales. Nature. 2001;412:166–9.

    Article  CAS  PubMed  Google Scholar 

  14. Iqbal SM, Bashir R. Nanopores: sensing and fundamental biological interactions. Heidelberg: Springer; 2011.

    Book  Google Scholar 

  15. Edel JB, Albrecht T. Engineered nanopores for bioanalytical applications. Amsterdam, NL: Elsevier Science; 2013.

    Google Scholar 

  16. Wanunu M. Nanopores: a journey towards DNA sequencing. Phys Life Rev. 2012;9:125–58.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carson S, Wanunu M. Challenges in DNA motion control and sequence readout using nanopore devices. Nanotechnology. 2015;26:074004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang Y, Yang Q, Wang Z. The evolution of nanopore sequencing. Front Genet 2014;5:449.

    PubMed  Google Scholar 

  19. Agah S, Zheng M, Pasquali M, Kolomeisky AB. DNA sequencing by nanopores: advances and challenges. J Phys D. 2016;49:413001.

    Article  CAS  Google Scholar 

  20. Tang Z, Zhang D, Cui W, Zhang H, Pang W, Duan X. Fabrications, applications and challenges of solid-state nanopores: a mini review. Nanomater Nanotechnol 2016;6:35.

    Article  CAS  Google Scholar 

  21. Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, et al. Recent progress in solid-state nanopores. Adv Mater. 2018;30:e1704680.

    Article  PubMed  CAS  Google Scholar 

  22. Yuan Z, Wang C, Yi X, Ni Z, Chen Y, Li T. Solid-state nanopore. Nanoscale Res Lett. 2018;13:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pungetmongkol P. Speculation of nano-gap sensor for DNA sequencing technology: a review on synthetic nanopores. Eng J. 2018;22:229–50.

    Article  Google Scholar 

  24. Huang S, Romero-Ruiz M, Castell OK, Bayley H, Wallace MI. High-throughput optical sensing of nucleic acids in a nanopore array. Nat Nanotechnol. 2015;10:986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol. 2001;19:636–9.

    Article  CAS  PubMed  Google Scholar 

  26. Pennisi E. Search for pore-fection. Science. 2012;336:534.

    Article  CAS  PubMed  Google Scholar 

  27. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol. 2012;30:349–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laszlo AH, Derrington IM, Ross BC, Brinkerhoff H, Adey A, Nova IC, et al. Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol. 2014;32:829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meller A. Dynamics of polynucleotide transport through nanometre-scale pores. J Phys Condens Matter 2003;15:R581.

    Article  CAS  Google Scholar 

  30. Akahori R, Haga T, Hatano T, Yanagi I, Ohura T, Hamamura H, et al. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Nanotechnology. 2014;25:275501.

    Article  PubMed  CAS  Google Scholar 

  31. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater. 2003;2:537–40.

    Article  CAS  PubMed  Google Scholar 

  32. Larkin J, Henley R, Bell DC, Cohen-Karni T, Rosenstein JK, Wanunu M. Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano 2013;7:10121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwok H, Briggs K, Tabard-Cossa V. Nanopore fabrication by controlled dielectric breakdown. PLoS ONE. 2014;9:e92880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yanagi I, Akahori R, Hatano T, Takeda K. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Sci Rep. 2014;4:5000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Briggs K, Kwok H, Tabard-Cossa V. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. Small 2014;10:2077–86.

    Article  CAS  PubMed  Google Scholar 

  36. Goto Y, Yanagi I, Matsui K, Yokoi T, Takeda K. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction. Sci Rep. 2016;6:31324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tahvildari R, Beamish E, Tabard-Cossa V, Godin M. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown. Lab Chip. 2015;15:1407–11.

    Article  CAS  PubMed  Google Scholar 

  38. Yanagi I, Akahori R, Aoki M, Harada K, Takeda K. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes. Lab Chip. 2016;16:3340–50.

    Article  CAS  PubMed  Google Scholar 

  39. Pud S, Verschueren DV, Vukovic N, Plesa C, Jonsson M, Dekker C. Self-aligned plasmonic nanopores by optically controlled dielectric breakdown. Nano Lett. 2015;15:7112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gilboa T, Zrehen A, Girsault A, Meller A. Optically-monitored nanopore fabrication using a focused laser beam. Sci Rep. 2018;8:9765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Briggs K, Charron M, Kwok H, Le T, Chahal S, Bustamante J, et al. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution. Nanotechnology. 2015;26:084004.

    Article  CAS  PubMed  Google Scholar 

  42. Matsui K, Yanagi I, Goto Y, Takeda K. Prevention of dielectric breakdown of nanopore membranes by charge neutralization. Sci Rep. 2015;5:17819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ying C, Zhang Y, Feng Y, Zhou D, Wang D, Xiang Y, et al. 3D nanopore shape control by current-stimulus dielectric breakdown. Appl Phys Lett. 2016;109:063105.

    Article  CAS  Google Scholar 

  44. Arcadia CE, Reyes CC, Rosenstein JK. In-situ nanopore fabrication and single-molecule sensing with microscale liquid contacts. ACS Nano 2017;11:4907.

    Article  CAS  PubMed  Google Scholar 

  45. Yanagi I, Fujisaki K, Hamamura H, Takeda K. Thickness-dependent dielectric breakdown and nanopore creation on sub-10-nm-thick SiN membranes in solution. J Appl Phys. 2017;121:045301.

    Article  CAS  Google Scholar 

  46. Carlsen AT, Briggs K, Hall AR, Tabard-Cossa V. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology. 2017;28:085304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LM, et al. DNA translocation through graphene nanopores. Nano Lett. 2010;10:3163–7.

    Article  CAS  PubMed  Google Scholar 

  48. Liu K, Feng J, Kis A, Radenovic A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 2014;8:2504–11.

    Article  CAS  PubMed  Google Scholar 

  49. Liu S, Lu B, Zhao Q, Li J, Gao T, Chen Y, et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv Mater. 2013;25:4549–54.

    Article  CAS  PubMed  Google Scholar 

  50. Heerema SJ, Dekker C. Graphene nanodevices for DNA sequencing. Nat Nanotechnol. 2016;11:127.

    Article  CAS  PubMed  Google Scholar 

  51. Venta K, Shemer G, Puster M, Rodriguez-Manzo JA, Balan A, Rosenstein JK, et al. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano 2013;7:4629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carlsen AT, Zahid OK, Ruzicka J, Taylor EW, Hall AR. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS Nano 2014;8:4754–60.

    Article  CAS  PubMed  Google Scholar 

  53. Lee M-H, Kumar A, Park K-B, Cho S-Y, Kim H-M, Lim M-C, et al. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci Rep. 2014;4:7448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yanagi I, Ishida T, Fujisaki K, Takeda K. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Sci Rep. 2015;5:14656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol. 2010;5:807.

    Article  CAS  PubMed  Google Scholar 

  56. Yamazaki H, Hu R, Zhao Q, Wanunu M. Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano 2018;12:12472–81.

    Article  CAS  PubMed  Google Scholar 

  57. Wanunu M, Sutin J, McNally B, Chow A, Meller A. DNA translocation governed by interactions with solid-state nanopores. Biophys J. 2008;95:4716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol. 2011;6:615–24.

    Article  CAS  PubMed  Google Scholar 

  59. Fologea D, Uplinger J, Thomas B, McNabb DS, Li J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 2005;5:1734–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 2012;12:1038–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Verschueren DV, Jonsson MP, Dekker C. Temperature dependence of DNA translocations through solid-state nanopores. Nanotechnology. 2015;26:234004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol. 2009;5:160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Squires AH, Hersey JS, Grinstaff MW, Meller A. A nanopore-nanofiber mesh biosensor to control DNA translocation. J Am Chem Soc 2013;135:16304–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goto Y, Haga T, Yanagi I, Yokoi T, Takeda K. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure. Sci Rep. 2015;5:16640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang Z, Liang Z, Lu B, Li J, Hu R, Zhao Q, et al. Gel mesh as “brake” to slow down DNA translocation through solid-state nanopores. Nanoscale 2015;7:13207–14.

    Article  CAS  PubMed  Google Scholar 

  66. Yoshida H, Goto Y, Akahori R, Tada Y, Terada S, Komura M, et al. Slowing the translocation of single-stranded DNA by using nano-cylindrical passage self-assembled by amphiphilic block copolymers. Nanoscale 2016;8:18270–6.

    Article  CAS  PubMed  Google Scholar 

  67. Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM, Lemay SG, et al. Direct force measurements on DNA in a solid-state nanopore. Nat Phys. 2006;2:473–7.

    Article  CAS  Google Scholar 

  68. Nelson EM, Li H, Timp G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. ACS Nano 2014;8:5484–93.

    Article  CAS  PubMed  Google Scholar 

  69. Akahori R, Yanagi I, Goto Y, Harada K, Yokoi T, Takeda K. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion. Sci Rep. 2017;7:9073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lu B, Albertorio F, Hoogerheide DP, Golovchenko JA. Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys J. 2011;101:70–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feng J, Liu K, Bulushev RD, Khlybov S, Dumcenco D, Kis A, et al. Identification of single nucleotides in MoS2 nanopores. Nat Nanotechnol. 2015;10:1070.

    Article  CAS  PubMed  Google Scholar 

  72. Goto Y, Yanagi I, Matsui K, Yokoi T, Takeda K. Identification of four single-stranded DNA homopolymers with a solid-state nanopore in alkaline CsCl solution. Nanoscale 2018;10:20844–50.

    Article  CAS  PubMed  Google Scholar 

  73. Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, et al. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 2010;107:16060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Comer J, Aksimentiev A. DNA sequence-dependent ionic currents in ultra-small solid-state nanopores. Nanoscale 2016;8:9600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–70.

    Article  CAS  PubMed  Google Scholar 

  76. Ayub M, Hardwick SW, Luisi BF, Bayley H. Nanopore-based identification of individual nucleotides for direct RNA sequencing. Nano Lett. 2013;13:6144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kumar S, Tao C, Chien M, Hellner B, Balijepalli A, Robertson JWF, et al. PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci Rep. 2012;2:684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Stranges PB, Palla M, Kalachikov S, Nivala J, Dorwart M, Trans A, et al. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array. Proc Natl Acad Sci USA 2016;113:E6749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee JW. Nanoelectrode-gated detection of individual molecules with potential for rapid DNA sequencing. Solid State Phenom 2007;121-123:1379–86.

    Article  CAS  Google Scholar 

  80. Tsutsui M, Taniguchi M, Kawai T. Fabrication of 0.5 nm electrode gaps using self-breaking technique. Appl Phys Lett. 2008;93:163115.

    Article  CAS  Google Scholar 

  81. Tsutsui M, Taniguchi M, Yokota K, Kawai T. Identifying single nucleotides by tunnelling current. Nat Nanotechnol. 2010;5:286–90.

    Article  CAS  PubMed  Google Scholar 

  82. Ohshiro T, Matsubara K, Tsutsui M, Furuhashi M, Taniguchi M, Kawai T. Single-molecule electrical random resequencing of DNA and RNA. Sci Rep. 2012;2:501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ohshiro T, Tsutsui M, Yokota K, Taniguchi M. Quantitative analysis of DNA with single-molecule sequencing. Sci Rep. 2018;8:8517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Taniguchi M. Selective multidetection using nanopores. Anal Chem. 2015;87:188–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express the utmost thanks to all coworkers for their dedication to Hitachi’s solid-state nanopore DNA sequencer project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Goto.

Ethics declarations

Conflict of interest

Financial support for this work was provided by Hitachi, Ltd. Y.G., R.A., I.Y., and K.T. are current employees of Hitachi, Ltd.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, Y., Akahori, R., Yanagi, I. et al. Solid-state nanopores towards single-molecule DNA sequencing. J Hum Genet 65, 69–77 (2020). https://doi.org/10.1038/s10038-019-0655-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-019-0655-8

Search

Quick links