Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C–H···π interactions disrupt electrostatic interactions between non-aqueous electrolytes to increase solubility

Abstract

Grid-scale energy storage applications, such as redox flow batteries, rely on the solubility of redox-active organic molecules. Although redox-active pyridiniums exhibit exceptional persistence in multiple redox states at low potentials (desirable properties for energy storage applications), their solubility in non-aqueous media remains low, and few practical molecular design strategies exist to improve solubility. Here we convey the extent to which discrete, attractive interactions between C–H groups and π electrons of an aromatic ring (C–H···π interactions) can describe the solubility of N-substituted pyridinium salts in a non-aqueous solvent. We find a direct correlation between the number of C–H···π interactions for each pyridinium salt and its solubility in acetonitrile. The correlation presented in this work highlights a consequence of disrupting strong electrostatic interactions with weak dispersion interactions, showing how minimal structural change can dramatically impact pyridinium solubility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of strategies for improving electrolyte solubility in non-aqueous solvent.
Fig. 2: Synthesis and non-aqueous solubility of pyridinium ROMs.
Fig. 3: Experimental pyridinium redox potentials enable validation of DFT-optimized structures.
Fig. 4: Conventional physical organic molecular descriptors do not correlate with pyridinium solubility.
Fig. 5: C–H···π interactions increase pyridinium solubility by disrupting ionic crystal lattice.
Fig. 6: 1H-NMR confirms C–H···π interactions are present between solvated pyridiniums.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supporting information files) with the exception of raw voltammetry data and raw spectrophotometry data, which can be provided upon request. Metrical parameters for crystal structures are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC-2162134, 2163981, 2165226, 2157789, 2155765, 2155982, 2162102, 2156178, 2163473, 2155992, 2155704, 2156211, 2156206, 2155715, 2167771, 2157809, 2166708, 2168227, 2157813, 2156563, 2156214 and 2158012. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D. & Schubert, U. S. Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56, 686–711 (2017).

    Article  CAS  Google Scholar 

  2. Li, M., Rhodes, Z., Cabrera-Pardo, J. R. & Minteer, S. D. Recent advancements in rational design of non-aqueous organic redox flow batteries. Sustain. Energy Fuels 4, 4370–4389 (2020).

    Article  CAS  Google Scholar 

  3. Luo, J., Hu, B., Hu, M., Zhao, Y. & Liu, T. L. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240 (2019).

    Article  CAS  Google Scholar 

  4. Kowalski, J. A., Su, L., Milshtein, J. D. & Brushett, F. R. Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries. Curr. Opin. Chem. Eng. 13, 45–52 (2016).

    Article  Google Scholar 

  5. Soloveichik, G. L. Flow batteries: current status and trends. Chem. Rev. 115, 11533–11558 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Wedege, K., Dražević, E., Konya, D. & Bentien, A. Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility. Sci. Rep. 6, 1–13 (2016).

    Article  Google Scholar 

  7. Er, S., Suh, C., Marshak, M. P. & Aspuru-Guzik, A. Computational design of molecules for an all-quinone redox flow battery. Chem. Sci. 6, 885–893 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Sevov, C. S. et al. Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries. J. Am. Chem. Soc. 137, 14465–14472 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Robinson, S. G., Yan, Y., Hendriks, K. H., Sanford, M. S. & Sigman, M. S. Developing a predictive solubility model for monomeric and oligomeric cyclopropenium-based flow battery catholytes. J. Am. Chem. Soc. 141, 10171–10176 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Sevov, C. S. et al. Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications. J. Am. Chem. Soc. 139, 2924–2927 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry (Wiley, 2011).

  12. Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook (CRC Press, 2000).

  13. Barton, A. F. M. Solubility parameters. Chem. Rev. 75, 731–753 (1975).

    Article  CAS  Google Scholar 

  14. Geysens, P., Evers, J., Dehaen, W., Fransaer, J. & Binnemans, K. Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification. RSC Adv. 10, 39601–39610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Attanayake, N. H. et al. Tailoring two-electron-donating phenothiazines to enable high-concentration redox electrolytes for use in nonaqueous redox flow batteries. Chem. Mater. 31, 4353–4363 (2019).

    Article  CAS  Google Scholar 

  16. Milshtein, J. D. et al. High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy Environ. Sci. 9, 3531–3543 (2016).

    Article  CAS  Google Scholar 

  17. Huang, J. et al. Liquid catholyte molecules for nonaqueous redox flow batteries. Adv. Energy Mater. 5, 1–6 (2015).

    Article  Google Scholar 

  18. Lall-Ramnarine, S. I. et al. Connecting structural and transport properties of ionic liquids with cationic oligoether chains. J. Electrochem. Soc. 164, H5247–H5262 (2017).

    Article  CAS  Google Scholar 

  19. Gong, K., Fang, Q., Gu, S., Li, S. F. Y. & Yan, Y. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy Environ. Sci. 8, 3515–3530 (2015).

    Article  Google Scholar 

  20. Sevov, C. S., Hendriks, K. H. & Sanford, M. S. Low-potential pyridinium anolyte for aqueous redox flow batteries. J. Phys. Chem. C 121, 24376–24380 (2017).

    Article  CAS  Google Scholar 

  21. Cheng, W. C. & Kurth, M. J. The Zincke reaction. A review. Org. Prep. Proced. Int. 34, 585–608 (2002).

    Article  CAS  Google Scholar 

  22. DiMauro, E. F. & Kozlowski, M. C. Phosphabenzenes as electron withdrawing phosphine ligands in catalysis. J. Chem. Soc. Perkin. Trans. 2, 439–444 (2002).

    Article  Google Scholar 

  23. Yue, H. et al. Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 10, 4430–4435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abraham, M. H. & Le, J. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J. Pharm. Sci. 88, 868–880 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Brethomé, A. V., Fletcher, S. P. & Paton, R. S. Conformational effects on physical-organic descriptors: the case of sterimol steric parameters. ACS Catal. 9, 2313–2323 (2019).

    Article  Google Scholar 

  26. Verloop, A., Hoogenstraaten, W. & Tipker, J. in Drug Design. (ed. Ariënsvol, E. J.) vol. 1962, 165–207 (Academic Press, 1976).

  27. Verloop, A. in The Sterimol Approach: Further Development of the Method and New Applications (eds Doyle, P. & Fujita, T.) 339–344 (Elsevier, 1983).

  28. Karthikeyan, S., Ramanathan, V. & Mishra, B. K. Influence of the substituents on the CH···π interaction: benzene–methane complex. J. Phys. Chem. A 117, 6687–6694 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Wheeler, S. E., Seguin, T. J., Guan, Y. & Doney, A. C. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc. Chem. Res. 49, 1061–1069 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Houser, J. et al. The CH–π interaction in protein–carbohydrate binding: bioinformatics and in vitro quantification. Chem. Eur. J. 26, 10769–10780 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J. Am. Chem. Soc. 122, 3746–3753 (2000).

    Article  CAS  Google Scholar 

  33. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  35. Mclachlan, A. D. Effect of the medium on dispersion forces in liquids. Discuss. Faraday Soc. 40, 239–245 (1965).

    Article  Google Scholar 

  36. Davey, R. J., Schroeder, S. L. M. & Ter Horst, J. H. Nucleation of organic crystals—a molecular perspective. Angew. Chem. Int. Ed. 52, 2166–2179 (2013).

    Article  CAS  Google Scholar 

  37. Hulme, A. T. et al. Search for a predicted hydrogen bonding motif—a multidisciplinary investigation into the polymorphism of 3-azabicyclo[3.3.1]nonane-2,4-dione. J. Am. Chem. Soc. 129, 3649–3657 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Davey, R. J., Dent, G., Mughal, R. K. & Parveen, S. Concerning the relationship between structural and growth synthons in crystal nucleation: solution and crystal chemistry of carboxylic acids as revealed through IR spectroscopy. Crystal Growth Design 6, 1788–1796 (2006).

    Article  CAS  Google Scholar 

  39. Tresca, B. W. et al. Substituent effects in CH hydrogen bond interactions: linear free energy relationships and influence of anions. J. Am. Chem. Soc. 137, 14959–14967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Simeral, L. & Amey, R. L. Dielectric properties of liquid propylene carbonate. J. Phys. Chem. 74, 1443–1446 (1970).

    Article  CAS  Google Scholar 

  41. Maryott, A. A. & Smith, E. Table of Dielectric Constants of Pure Liquids. 514, 1–56 (US Government Printing Office, 1951).

  42. Kolling, O. W. Dielectric characterization of cosolvent systems containing tetrahydrofuran. Trans. Kansas Acad. Sci. 94, 107 (1991).

    Article  Google Scholar 

  43. Richards, T. W. & Shipley, J. W. The dielectric constants of typical aliphatic and aromatic hydrocarbons, cyclohexane, cyclohexanone, and cyclohexanol. J. Am. Chem. Soc. 41, 2002–2012 (1919).

    Article  CAS  Google Scholar 

  44. Pinal, R. Effect of molecular symmetry on melting temperature and solubility. Org. Biomol. Chem. 2, 2692–2699 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. CH/π interaction in the crystal structure of organic compounds. A database study. Bull. Chem. Soc. Jpn 71, 1207–1213 (1998).

    Article  CAS  Google Scholar 

  46. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  Google Scholar 

  47. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

  48. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  49. Kawahara, S. I., Tsuzuki, S. & Uchimaru, T. Theoretical study of the C-F/π interaction: attractive interaction between fluorinated alkane and an electron-deficient π-system. J. Phys. Chem. A 108, 6744–6749 (2004).

    Article  CAS  Google Scholar 

  50. Wheeler, S. E. & Houk, K. N. Substituent effects in cation/π interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents. J. Am. Chem. Soc. 131, 3126–3127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sinnokrot, M. O. & Sherrill, C. D. Substituent effects in π–π interactions: sandwich and t-shaped configurations. J. Am. Chem. Soc. 126, 7690–7697 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Michigan State University Center for Crystallographic Research for crystallographic analysis and the Michigan State University Mass Spectrometry and Metabolomics Core for providing high-resolution mass spectra of pyridinium salts. The Rigaku Synergy S Diffractometer was purchased with support from the MRI program by the National Science Foundation under grant no. 1919565 for use at the Center for Crystallographic Research, MSU. Portions of this project were made possible by a grant from the Community Foundation of Holland/Zeeland and Lakeshore Advantage through a Michigan Strategic Fund grant (T.G. and C.H.).

Author information

Authors and Affiliations

Authors

Contributions

S.S., T.G. and D.P.H. were responsible for the conceptualization of the project. C.H. performed all synthetic procedures. S.S. performed all solubility measurements and crystal growth. L.M. and D.P.H. performed all DFT calculations. R.J.S. collected and analysed all the crystallographic data. S.S., C.H., C.B. and N.G.G.C. analysed and interpreted the experimental and computational data. S.S., C.H., L.M. and D.P.H. prepared the Supplementary Information. S.S. and D.P.H. drafted the original version of the manuscript. All authors contributed to reviewing and editing the final manuscript.

Corresponding authors

Correspondence to Thomas Guarr or David P. Hickey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Magdaléna Hromadova, Steve Scheiner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 C-H···π interactions correlate with pyridinium solubility in several aprotic solvents.

Plots comparing solubilities of nine representative pyridinium derivatives from low (1, 2, 6, 16), moderate (5, 10, 12, 20) and high (14) solubility regimes (in acetonitrile). Solubilities were evaluated in acetonitrile (blue circles), THF (purple diamonds), cyclohexanone (green triangles), and propylene carbonate (orange squares). (A) A plot comparing pyridinium solubility in each solvent to a descriptor of C-H···π interactions (∑d−6). (B) Semi-log plot of pyridinium solubility in each solvent vs. the dielectric constant of the respective solvent (that is, εTHF = 7.6, εcyclohexanone = 18, εacetonitrile = 37, and εPC = 66). Solubility measurements were performed at 22 °C. Average values are reported where error bars represent one standard deviation with n = 3 for all compounds except for compound 17 (n = 2), compound 24 (n = 5), and compound 14 (n = 9).

Source data

Supplementary information

Supplementary Information

Supplementary materials and methods, text, Figs. 1–97 and Tables 1–6.

Supplementary Data 1

Crystallographic data for compound 1; CCDC reference 2157789.

Supplementary Data 2

Crystallographic data for compound 2; CCDC reference 2156178.

Supplementary Data 3

Crystallographic data for compound 4; CCDC reference 2156211.

Supplementary Data 4

Crystallographic data for compound 5; CCDC reference 2167771.

Supplementary Data 5

Crystallographic data for compound 6; CCDC reference 2155765.

Supplementary Data 6

Crystallographic data for compound 7; CCDC reference 2163473.

Supplementary Data 7

Crystallographic data for compound 8; CCDC reference 2157813.

Supplementary Data 8

Crystallographic data for compound 9; CCDC reference 2156206.

Supplementary Data 9

Crystallographic data for compound 10; CCDC reference 2157809.

Supplementary Data 10

Crystallographic data for compound 11; CCDC reference 2155982.

Supplementary Data 11

Crystallographic data for compound 12; CCDC reference 2155992.

Supplementary Data 12

Crystallographic data for compound 13; CCDC reference 2156563.

Supplementary Data 13

Crystallographic data for compound 14; CCDC reference 2155715.

Supplementary Data 14

Crystallographic data for compound 15; CCDC reference 2166708.

Supplementary Data 15

Crystallographic data for compound 16; CCDC reference 2162102.

Supplementary Data 16

Crystallographic data for compound 17; CCDC reference 2155704.

Supplementary Data 17

Crystallographic data for compound 18; CCDC reference 2156214.

Supplementary Data 18

Crystallographic data for compound 19; CCDC reference 2158012.

Supplementary Data 19

Crystallographic data for compound 20; CCDC reference 2168227.

Supplementary Data 20

Crystallographic data for compound 21; CCDC reference 2162134.

Supplementary Data 21

Crystallographic data for compound 22; CCDC reference 2163981.

Supplementary Data 22

Crystallographic data for compound 23; CCDC reference 2165226.

Supplementary Data 1

Crystallographic structure factor data for compound 1; CCDC reference 2157789.

Supplementary Data 2

Crystallographic structure factor data for compound 2; CCDC reference 2156178.

Supplementary Data 3

Crystallographic structure factor data for compound 4; CCDC reference 2156211.

Supplementary Data 4

Crystallographic structure factor data for compound 5; CCDC reference 2167771.

Supplementary Data 5

Crystallographic structure factor data for compound 6; CCDC reference 2155765.

Supplementary Data 6

Crystallographic structure factor data for compound 7; CCDC reference 2163473.

Supplementary Data 7

Crystallographic structure factor data for compound 8; CCDC reference 2157813.

Supplementary Data 8

Crystallographic structure factor data for compound 9; CCDC reference 2156206.

Supplementary Data 9

Crystallographic structure factor data for compound 10; CCDC reference 2157809.

Supplementary Data 10

Crystallographic structure factor data for compound 11; CCDC reference 2155982.

Supplementary Data 11

Crystallographic structure factor data for compound 12; CCDC reference 2155992.

Supplementary Data 12

Crystallographic structure factor data for compound 13; CCDC reference 2156563.

Supplementary Data 13

Crystallographic structure factor data for compound 14; CCDC reference 2155715.

Supplementary Data 14

Crystallographic structure factor data for compound 15; CCDC reference 2166708.

Supplementary Data 15

Crystallographic structure factor data for compound 16; CCDC reference 2162102.

Supplementary Data 16

Crystallographic structure factor data for compound 17; CCDC reference 2155704.

Supplementary Data 17

Crystallographic structure factor data for compound 18; CCDC reference 2156214.

Supplementary Data 18

Crystallographic structure factor data for compound 19; CCDC reference 2158012.

Supplementary Data 19

Crystallographic structure factor data for compound 20; CCDC reference 2168227.

Supplementary Data 20

Crystallographic structure factor data for compound 21; CCDC reference 2162134.

Supplementary Data 21

Crystallographic structure factor data for compound 22; CCDC reference 2163981.

Supplementary Data 22

Crystallographic structure factor data for compound 23; CCDC reference 2165226.

Source data

Source Data Fig. 2

Pyridinium solubilities in acetonitrile.

Source Data Fig. 3

Representative cyclic voltammograms. Experimentally determined reduction potentials. Experimentally versus computationally determined reduction potentials.

Source Data Fig. 4

Pyridinium solubilities in acetonitrile versus polarizability. Pyridinium solubilities in acetonitrile versus dipole moment. Pyridinium solubilities in acetonitrile versus sterimol parameters. Pyridinium solubilities in acetonitrile versus average distance between N+ and B.

Source Data Fig. 5

Pyridinium solubilities in acetonitrile versus CH–π parameter.

Source Data Fig. 6

Variable concentration H-NMR peak change for compound 14. Variable concentration H-NMR peak change for compound 13.

Source Data Extended Data Fig.1/Table 1

Pyridinium solubilities in acetonitrile, cyclohexanone, PC and THF versus CH−π parameter. Pyridinium solubilities in acetonitrile, cyclohexanone, PC and THF versus solvent dielectric constant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaroo, S., Hengesbach, C., Bruggeman, C. et al. C–H···π interactions disrupt electrostatic interactions between non-aqueous electrolytes to increase solubility. Nat. Chem. 15, 1365–1373 (2023). https://doi.org/10.1038/s41557-023-01291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01291-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing