Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective scandium ion capture through coordination templating in a covalent organic framework

Abstract

The use of coordination complexes within covalent organic frameworks can significantly diversify the structures and properties of this class of materials. Here we combined coordination chemistry and reticular chemistry by preparing frameworks that consist of a ditopic (p-phenylenediamine) and mixed tritopic moieties—an organic ligand and a scandium coordination complex of similar sizes and geometries, both bearing terminal phenylamine groups. Changing the ratio of organic ligand to scandium complex enabled the preparation of a series of crystalline covalent organic frameworks with tunable levels of scandium incorporation. Removal of scandium from the material with the highest metal content subsequently resulted in a ‘metal-imprinted’ covalent organic framework that exhibits a high affinity and capacity for Sc3+ ions in acidic environments and in the presence of competing metal ions. In particular, the selectivity of this framework for Sc3+ over common impurity ions such as La3+ and Fe3+ surpasses that of existing scandium adsorbents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design strategy and synthesis of the Sc–COFs and MICOFs.
Fig. 2: Characterization of Sc–COF-33.
Fig. 3: Scandium(III) uptake in MICOF-33.
Fig. 4: Scandium(III) uptake selectivity.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study can be accessed at https://doi.org/10.6084/m9.figshare.19602262 (ref. 45). Source data are provided with this paper.

References

  1. Yasukawa, K. et al. A new and prospective resource for scandium: evidence from the geochemistry of deep-sea sediment in the western North Pacific Ocean. Ore Geol. Rev. 102, 260–267 (2018).

    Article  Google Scholar 

  2. Wang, W., Pranolo, Y. & Cheng, C. Y. Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 108, 100–108 (2011).

    Article  CAS  Google Scholar 

  3. Wang, W. & Cheng, C. Y. Separation and purification of scandium by solvent extraction and related technologies: a review. J. Chem. Technol. Biot. 86, 1237–1246 (2011).

    Article  CAS  Google Scholar 

  4. Chassé, M., Griffin, W. L., O’Reilly, S. Y. & Calas, G. Scandium speciation in a world-class lateritic deposit. Geochem. Persp. Lett. 3, 105–114 (2017).

    Article  Google Scholar 

  5. Zhang, P., You, S., Zhang, L., Feng, S. & Hou, S. A solvent extraction process for the preparation of ultrahigh purity scandium oxide. Hydrometallurgy 47, 47–56 (1997).

    Article  CAS  Google Scholar 

  6. Wilson, A. M. et al. Solvent extraction: the coordination chemistry behind extractive metallurgy. Chem. Soc. Rev. 43, 123–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Li, J., Chen, C., Zhang, R. & Wang, X. Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique. Sci. China Chem. 59, 150–158 (2016).

    Article  CAS  Google Scholar 

  8. Botelho Junior, A. B., Espinosa, D. C. R., Vaughan, J. & Tenório, J. A. S. Recovery of scandium from various sources: a critical review of the state of the art and future prospects. Miner. Eng. 172, 107148 (2021).

    Article  CAS  Google Scholar 

  9. Ahmad, Z. The properties and application of scandium-reinforced aluminum. JOM 55, 35–39 (2003).

    Article  CAS  Google Scholar 

  10. Das, S. et al. Extraction of scandium(III) from acidic solutions using organo-phosphoric acid reagents: a comparative study. Sep. Purif. Technol. 202, 248–258 (2018).

    Article  CAS  Google Scholar 

  11. Makanyire, T., Sanchez-Segado, S. & Jha, A. Separation and recovery of critical metal ions using ionic liquids. Adv. Manuf. 4, 33–46 (2016).

    Article  CAS  Google Scholar 

  12. Onghena, B. & Binnemans, K. Recovery of scandium(III) from aqueous solutions by solvent extraction with the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Ind. Eng. Chem. Res. 54, 1887–1898 (2015).

    Article  CAS  Google Scholar 

  13. Tu, Z. et al. Silica gel modified with 1-(2-aminoethyl)-3-phenylurea for selective solid-phase extraction and preconcentration of Sc(III) from environmental samples. Talanta 80, 1205–1209 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Ramasamy, D. L., Puhakka, V., Doshi, B., Iftekhar, S. & Sillanpää, M. Fabrication of carbon nanotubes reinforced silica composites with improved rare earth elements adsorption performance. Chem. Eng. J. 365, 291–304 (2019).

    Article  CAS  Google Scholar 

  15. Peng, Y. et al. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9, 187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yuan, Y. & Zhu, G. Porous aromatic frameworks as a platform for multifunctional applications. ACS Cent. Sci. 5, 409–418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  Google Scholar 

  18. Yue, J.-Y. et al. Metal ion-assisted carboxyl-containing covalent organic frameworks for the efficient removal of Congo red. Dalton Trans. 48, 17763–17769 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Lu, Q. et al. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew. Chem. Int. Ed. 57, 6042–6048 (2018).

    Article  CAS  Google Scholar 

  20. Huang, N., Zhai, L., Xu, H. & Jiang, D. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 139, 2428–2434 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, Q. et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 139, 2786–2793 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, Y., Liu, C. & Huang, A. EDTA-functionalized covalent organic framework for the removal of heavy-metal ions. ACS Appl. Mater. Interfaces 11, 32186–32191 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Dong, J., Han, X., Liu, Y., Li, H. & Cui, Y. Metal–covalent organic frameworks (MCOFs): a bridge between metal–organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. 59, 2–14 (2020).

    Article  Google Scholar 

  25. Chen, L., Wang, X., Lu, W., Wu, X. & Li, J. Molecular imprinting: perspectives and applications. Chem. Soc. Rev. 45, 2137–2211 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, Y., Yang, Y. & Zhu, G. Molecularly imprinted porous aromatic frameworks for molecular recognition. ACS Cent. Sci. 6, 1082–1094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo, Z. et al. Molecularly imprinted polymer/metal organic framework based chemical sensors. Coatings 6, 42 (2016).

    Article  Google Scholar 

  28. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Parashar, G. K. & Rai, A. K. Synthesis, molecular weights and infrared spectra of some scandium(III) higher carboxylates. Transit. Met. Chem. 3, 49–50 (1978).

    Article  CAS  Google Scholar 

  30. Rai, A. K. & Parashar, G. K. Synthesis and structural studies of some scandium(III) carboxylates. Synth. React. Inorg. Met. Org. Chem. 9, 301–307 (1979).

    Article  CAS  Google Scholar 

  31. Zhang, X., Kumar, R. & Kuroda, D. G. Acetate ion and its interesting solvation shell structure and dynamics. J. Chem. Phys. 148, 094506 (2018).

    Article  Google Scholar 

  32. Anderson, T., Neuman, M. & Melson, G. Coordination chemistry of scandium. VI. Crystal and molecular structure of tris(tropolonato)scandium(III). Stereochemistry of some six-coordinate complexes. Inorg. Chem. 13, 158–163 (1974).

    Article  CAS  Google Scholar 

  33. Holder, C. F. & Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Ravikovitcha, P. I., Haller, G. L. & Neimark, A. V. Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Adv. Colloid Interface Sci. 76–77, 203–226 (1998).

    Article  Google Scholar 

  35. Jiang, J., Zhao, Y. & Yaghi, O. M. Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138, 3255–3265 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, N., Huang, C. & Hu, B. ICP-AES determination of trace rare earth elements in environmental and food samples by on-line separation and preconcentration with acetylacetone-modified silica gel using microcolumn. Anal. Sci. 23, 997–1002 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Iftekhar, S., Srivastava, V. & Sillanpää, M. Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem. Eng. J. 320, 151–159 (2017).

    Article  CAS  Google Scholar 

  38. Ramasamy, D., Puhakka, V., Repo, E., Khan, S. & Sillanpää, M. Coordination and silica surface chemistry of lanthanides (III), scandium (III) and yttrium (III) sorption on 1-(2-pyridylazo)-2-napththol (PAN) and acetylacetone (acac) immobilized gels. Chem. Eng. J. 324, 104–112 (2017).

    Article  CAS  Google Scholar 

  39. Wang, W., Pranolo, Y. & Cheng, C. Y. Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 108, 100–108 (2011).

    Article  CAS  Google Scholar 

  40. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976).

    Article  CAS  Google Scholar 

  41. Frisch, M. J. et al. Gaussian 16, Revision C (Gaussian, 2016).

  42. Wei, D. et al. Adsorption properties of hydrated Cr3+ ions on Schiff-base covalent organic frameworks: a DFT study. Chem. Asian J. 15, 1140–1146 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Spedding, F. H. & Croat, J. J. Magnetic properties of high purity scandium and the effect of impurities on these properties. J. Chem. Phys. 58, 5514–5526 (1973).

    Article  CAS  Google Scholar 

  44. Bunzli, J.-C. G. & Choppin, G. R. (eds) Lanthanide Probes in Life, Chemical and Earth Sciences (Elsevier, 1989).

  45. Yaun, Y. Data for selective scandium ion capture through coordination templating in a covalent organic framework. figshare https://figshare.com/s/307112ae4822adc40e38 (2023).

Download references

Acknowledgements

G.Z. was supported by the National Key R&D Program of China (grant no. 2022YFB3805902), the National Natural Science Foundation of China (grant nos 22131004 and U21A20330) and the ‘111’ project (grant no. B18012). Y. Yang was supported by the National Natural Science Foundation of China (grant no. 52204389). Y. Yuan was supported by the National Natural Science Foundation of China (grant no. 21975039) and the Fundamental Research Funds for the Central Universities, Excellent Youth Team Program (grant no. 2412023YQ001). K.R.M. and J.R.L. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0019992.

Author information

Authors and Affiliations

Authors

Contributions

Y. Yang carried out the experiments, performed the data interpretation and draughted the initial manuscript. X.G. and W.Z. collected and analysed the TEM and STEM data. J.R.L. and K.R.M. helped design the experiments and wrote portions of the manuscript. S.Z. and R.F. performed the theoretical calculations. Y. Yuan and G.Z. developed the concept, supervised the experiments and draughted the manuscript.

Corresponding authors

Correspondence to Jeffrey R. Long or Guangshan Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Shengqian Ma, Dan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–14 and Discussion.

Reporting Summary

Source data

Source Data Fig. 2

Source data for Fig. 2a,c.

Source Data Fig. 3

Source data for Fig. 3a–d.

Source Data Fig. 4

Source data for Fig. 4a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Yang, Y., Meihaus, K.R. et al. Selective scandium ion capture through coordination templating in a covalent organic framework. Nat. Chem. 15, 1599–1606 (2023). https://doi.org/10.1038/s41557-023-01273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01273-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing