Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetic control of shape deformations and membrane phase separation inside giant vesicles

Abstract

A variety of cellular processes use liquid–liquid phase separation (LLPS) to create functional levels of organization, but the kinetic pathways by which it proceeds remain incompletely understood. Here in real time, we monitor the dynamics of LLPS of mixtures of segregatively phase-separating polymers inside all-synthetic, giant unilamellar vesicles. After dynamically triggering phase separation, we find that the ensuing relaxation—en route to the new equilibrium—is non-trivially modulated by a dynamic interplay between the coarsening of the evolving droplet phase and the interactive membrane boundary. The membrane boundary is preferentially wetted by one of the incipient phases, dynamically arresting the progression of coarsening and deforming the membrane. When the vesicles are composed of phase-separating mixtures of common lipids, LLPS within the vesicular interior becomes coupled to the membrane’s compositional degrees of freedom, producing microphase-separated membrane textures. This coupling of bulk and surface phase-separation processes suggests a physical principle by which LLPS inside living cells might be dynamically regulated and communicated to the cellular boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Segregative phase separation of PEG and dextran.
Fig. 2: Phase transition trajectory inside giant vesicles.
Fig. 3: Composition dependence of polymer phase separation inside giant vesicles.
Fig. 4: Coupling of bulk LLPS inside giant vesicles with membrane phase separation at the vesicle boundaries.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within this article and its supplementary information. Source data are provided with this paper.

References

  1. Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994).

    Google Scholar 

  2. Binder, K. Collective diffusion, nucleation and spinodal decomposition in polymer mixtures. J. Chem. Phys. 79, 6387–6409 (1983).

    CAS  Google Scholar 

  3. Onuki, A. Phase Transition Dynamics (Cambridge Univ. Press, 2002).

  4. Binder, K. Spinodal decomposition in confined geometry. J. Non-Equilib. Thermodyn. 23, 1–44 (1998).

    CAS  Google Scholar 

  5. Tanaka, H. Interplay between wetting and phase separation in binary fluid mixtures: roles of hydrodynamics. J. Phys. Condens. Matter 13, 4637–4674 (2001).

    CAS  Google Scholar 

  6. Puri, S. J. Surface-directed spinodal decomposition. J. Phys. Condens. Matter 17, R101–R142 (2005).

    CAS  Google Scholar 

  7. Jones, R. A. L., Norton, L. J., Kramer, E. J., Bates, F. S. & Wiltzius, P. Surface-directed spinodal decomposition. Phys. Rev. Lett. 66, 1326–1329 (1991).

    CAS  PubMed  Google Scholar 

  8. Wiltzius, P. & Cumming, A. Domain growth and wetting in polymer mixtures. Phys. Rev. Lett. 66, 3000–3003 (1991).

    CAS  PubMed  Google Scholar 

  9. Troian, S. M. Coalescence induced domain growth near a wall during spinodal decomposition. Phys. Rev. Lett. 71, 1399–1402 (1993).

    CAS  PubMed  Google Scholar 

  10. Tanaka, H. Double-phase separation in a confined, symmetrical binary mixture—interface quench effect unique to bicontinuous phase-separation. Phys. Rev. Lett. 72, 3690–3693 (1994).

    CAS  PubMed  Google Scholar 

  11. Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).

    PubMed  Google Scholar 

  12. Deshpande, S. & Dekker, C. Studying phase separation in confinement. Curr. Opin. Colloid Interface 52, 101419 (2021).

    CAS  Google Scholar 

  13. Bagatolli, L. A. & Stock, R. P. Lipids, membranes, colloids and cells: a long view. Biochim. Biophys. Acta Biomembr. 1863, 183684 (2021).

    CAS  PubMed  Google Scholar 

  14. Last, M. G. F., Deshpande, S. & Dekker, C. pH-controlled coacervate-membrane interactions within liposomes. ACS Nano 14, 4487–4498 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Agudo-Canalejo, J. et al. Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature 591, 142–146 (2021).

    CAS  PubMed  Google Scholar 

  16. Yuan, F. et al. Membrane bending by protein phase separation. Proc. Natl Acad. Sci. USA 118, e2017435118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Babl, L., Merino-Salomon, A., Kanwa, N. & Schwille, P. Membrane mediated phase separation of the bacterial nucleoid occlusion protein Noc. Sci. Rep. 12, 17949 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alberti, S. Phase separation in biology. Curr. Biol. 27, R1097–R1102 (2017).

    CAS  PubMed  Google Scholar 

  19. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, P. L. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Google Scholar 

  22. Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Huang, W. Y. C. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 363, 1098–1103 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Andre, A. A. M. & Spruijt, E. Liquid–liquid phase separation in crowded environments. Int. J. Mol. Sci. 21, 5908 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Crowe, C. D. & Keating, C. D. Liquid–liquid phase separation in artificial cells. Interface Focus 8, 20180032 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Albertsson, P.-Å. in Advances in Protein Chemistry (eds Edsall, J. T., Anfinsen, C. B. & Richards, F. M.) Vol. 24, 309–341 (Academic Press, 1970).

  27. Walde, P., Cosentino, K., Engel, H. & Stano, P. Giant vesicles: preparations and applications. ChemBioChem 11, 848–865 (2010).

    CAS  PubMed  Google Scholar 

  28. Deamer, D. W. & Bramhall, J. Permeability of lipid bilayers to water and ionic solutes. Chem. Phys. Lipids 40, 167–188 (1986).

    CAS  PubMed  Google Scholar 

  29. Helfrich, M. R., Mangeney-Slavin, L. K., Long, M. S., Djoko, Y. & Keating, C. D. Aqueous phase separation in giant vesicles. J. Am. Chem. Soc. 124, 13374–13375 (2002).

    CAS  PubMed  Google Scholar 

  30. Keating, C. D. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. 45, 2114–2124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y. H., Lipowsky, R. & Dimova, R. Transition from complete to partial wetting within membrane compartments. J. Am. Chem. Soc. 130, 12252–12253 (2008).

    CAS  PubMed  Google Scholar 

  32. Li, Y. H., Lipowsky, R. & Dimova, R. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. Proc. Natl Acad. Sci. USA 108, 4731–4736 (2011).

    CAS  PubMed Central  Google Scholar 

  33. Liu, Y. G., Lipowsky, R. & Dimova, R. Giant vesicles encapsulating aqueous two-phase systems: from phase diagrams to membrane shape transformations. Front. Chem. https://doi.org/10.3389/fchem.2019.00213 (2019).

  34. Long, M. S., Jones, C. D., Helfrich, M. R., Mangeney-Slavin, L. K. & Keating, C. D. Dynamic microcompartmentation in synthetic cells. Proc. Natl Acad. Sci. USA 102, 5920–5925 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Andes-Koback, M. & Keating, C. D. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 133, 9545–9555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kusumaatmaja, H., Li, Y., Dimova, R. & Lipowsky, R. Intrinsic contact angle of aqueous phases at membranes and vesicles. Phys. Rev. Lett. 103, 238103 (2009).

    PubMed  Google Scholar 

  37. Dimova, R. & Lipowsky, R. Giant vesicles exposed to aqueous two-phase systems: membrane wetting, budding processes and spontaneous tubulation. Adv. Mater. Interfaces 4, 1600451 (2017).

    Google Scholar 

  38. Morales-Penningston, N. F. et al. GUV preparation and imaging: minimizing artifacts. Biochim. Biophys. Acta Biomembr. 1798, 1324–1332 (2010).

    CAS  Google Scholar 

  39. Veatch, S. L. & Keller, S. L. Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94, 148101 (2005).

    PubMed  Google Scholar 

  40. Dominak, L. M. & Keating, C. D. Polymer encapsulation within giant lipid vesicles. Langmuir 23, 7148–7154 (2007).

    CAS  PubMed  Google Scholar 

  41. Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta Biomembr. 1768, 2182–2194 (2007).

    CAS  Google Scholar 

  42. Hatti-Kaul, R. Aqueous Two-Phase Systems: Methods and Protocols (Humana Press, 2000).

  43. Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13–137 (1997).

    CAS  Google Scholar 

  44. Liu, Y. G., Agudo-Canalejo, J., Grafmuller, A., Dimova, R. & Lipowsky, R. Patterns of flexible nanotubes formed by liquid-ordered and liquid-disordered membranes. ACS Nano 10, 463–474 (2016).

    CAS  Google Scholar 

  45. Lu, P. J. et al. Gelation of particles with short-range attraction. Nature 453, 499–503 (2008).

    CAS  PubMed  Google Scholar 

  46. Stradner, A. et al. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432, 492–495 (2004).

    CAS  PubMed  Google Scholar 

  47. Binder, K. & Stauffer, D. Theory for slowing down of relaxation and spinodal decomposition of binary-mixtures. Phys. Rev. Lett. 33, 1006–1009 (1974).

    Google Scholar 

  48. Binder, K. & Stauffer, D. Statistical-theory of nucleation, condensation and coagulation. Adv. Phys. 25, 343–396 (1976).

    CAS  Google Scholar 

  49. Furukawa, H. A dynamic scaling assumption for phase-separation. Adv. Phys. 34, 703–750 (1985).

    CAS  Google Scholar 

  50. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Google Scholar 

  51. Voorhees, P. W. Ostwald ripening of 2-phase mixtures. Annu. Rev. Mater. Sci. 22, 197–215 (1992).

    CAS  Google Scholar 

  52. Keblinski, P., Ma, W. J., Maritan, A., Koplik, J. & Banavar, J. R. Domain growth near a wall in spinodal decomposition. Phys. Rev. Lett. 72, 3738 (1994).

    CAS  PubMed  Google Scholar 

  53. Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).

    CAS  PubMed  Google Scholar 

  54. Julicher, F. & Lipowsky, R. Domain-induced budding of vesicles. Phys. Rev. Lett. 70, 2964–2967 (1993).

    CAS  PubMed  Google Scholar 

  55. Cakmak, F. P. & Keating, C. D. Combining catalytic microparticles with droplets formed by phase coexistence: adsorption and activity of natural clays at the aqueous/aqueous interface. Sci. Rep. 7, 3215 (2017).

    Google Scholar 

  56. Semrau, S., Idema, T., Schmidt, T. & Storm, C. Membrane-mediated interactions measured using membrane domains. Biophys. J. 96, 4906–4915 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ursell, T. S., Klug, W. S. & Phillips, R. Morphology and interaction between lipid domains. Proc. Natl Acad. Sci. USA 106, 13301–13306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yanagisawa, M., Imai, M., Masui, T., Komura, S. & Ohta, T. Growth dynamics of domains in ternary fluid vesicles. Biophys. J. 92, 115–125 (2007).

    CAS  PubMed  Google Scholar 

  59. Laradji, M. & Sunil Kumar, P. B. Dynamics of domain growth in self-assembled fluid vesicles. Phys. Rev. Lett. 93, 198105 (2004).

    PubMed  Google Scholar 

  60. Laradji, M. & Kumar, P. B. Anomalously slow domain growth in fluid membranes with asymmetric transbilayer lipid distribution. Phys. Rev. E 73, 040901 (2006).

    Google Scholar 

  61. Kuehn, M. J., Herrmann, J. M. & Schekman, R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    CAS  PubMed  Google Scholar 

  62. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    CAS  PubMed  Google Scholar 

  63. Case, L. B., Ditlev, J. A. & Rosen, M. K. Regulation of transmembrane signaling by phase separation. Annu. Rev. Biophys 48, 465–494 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Su, X. L. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Oglecka, K., Rangamani, P., Liedberg, B., Kraut, R. S. & Parikh, A. N. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLife 3, e03695 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Hamada, T., Kishimoto, Y., Nagasaki, T. & Takagi, M. Lateral phase separation in tense membranes. Soft Matter 7, 9061–9068 (2011).

    CAS  Google Scholar 

  68. Gordon, V. D., Deserno, M., Andrew, C. M. J., Egelhaaf, S. U. & Poon, W. C. K. Adhesion promotes phase separation in mixed-lipid membranes. Europhys. Lett. 84, 48003 (2008).

    Google Scholar 

  69. Tian, A. & Baumgart, T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 96, 2676–2688 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuzmin, P. I., Akimov, S. A., Chizmadzhev, Y. A., Zimmerberg, J. & Cohen, F. S. Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys. J. 88, 1120–1133 (2005).

    CAS  PubMed  Google Scholar 

  71. Seul, M. & Andelman, D. Domain shapes and patterns—the phenomenology of modulated phases. Science 267, 476–483 (1995).

    CAS  Google Scholar 

  72. Callan-Jones, A., Sorre, B. & Bassereau, P. Curvature-driven lipid sorting in biomembranes. Cold Spring Harb. Perspect. Biol. 3, a004648 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. Zhao, J., Wu, J. & Veatch, S. L. Adhesion stabilizes robust lipid heterogeneity in supercritical membranes at physiological temperature. Biophys. J. 104, 825–834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cans, A. S., Andes-Koback, M. & Keating, C. D. Positioning lipid membrane domains in giant vesicles by micro-organization of aqueous cytoplasm mimic. J. Am. Chem. Soc. 130, 7400–7406 (2008).

    CAS  Google Scholar 

  75. Angelova, M. I. & Dimitrov, D. S. Liposome electroformation. Faraday Disc. Chem. Soc. 81, 303–311 (1986).

    CAS  Google Scholar 

  76. Hatti-Kaul, R. Aqueous Two-Phase Systems: Methods and Protocols Vol. 11 (Humana Press, 2000).

  77. Albertsson, P.-Å. & Tjerneld, F. in Methods in Enzymology Vol. 228, 3–13 (Academic Press, 1994).

  78. Ribeiro, S. S., Samanta, N., Ebbinghaus, S. & Marco, J. C. The synergic effect of water and biomolecules in intracellular phase separation. Nat. Rev. Chem. 3, 552–561 (2019).

    CAS  Google Scholar 

  79. Gustafsson, A., Wennerstrom, H. & Tjerneld, F. The nature of phase separation in aqueous two-polymer systems. Polymer 27, 1768–1770 (1986).

    CAS  Google Scholar 

  80. Zaslavsky, B. Y. & Uversky, V. N. In aqua veritas: the indispensable yet mostly ignored role of water in phase separation and membrane-less organelles. Biochemistry 57, 2437–2451 (2018).

    CAS  PubMed  Google Scholar 

  81. Forciniti, D., Hall, C. K. & Kula, M. R. Interfacial tension of polyethyleneglycol-dextran-water systems: influence of temperature and polymer molecular weight. J. Biotechnol. 16, 279–296 (1990).

    CAS  Google Scholar 

  82. Liu, Y. G., Lipowsky, R. & Dimova, R. Concentration dependence of the interfacial tension for aqueous two-phase polymer solutions of dextran and polyethylene glycol. Langmuir 28, 3831–3839 (2012).

    CAS  PubMed  Google Scholar 

  83. Zhou, H. X., Rivas, G. N. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys 37, 375–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dasgupta, R., Miettinen, M. S., Fricke, N., Lipowsky, R. & Dimova, R. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc. Natl Acad. Sci. USA 115, 5756–5761 (2018).

    CAS  PubMed Central  Google Scholar 

  85. Feric, M. & Brangwynne, C. P. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 15, 1253–1259 (2013).

    CAS  PubMed Central  Google Scholar 

  86. Zhao, Z. L. et al. Super-resolution imaging of highly curved membrane structures in giant vesicles encapsulating molecular condensates. Adv. Mater. 34, 2106633 (2022).

    CAS  Google Scholar 

  87. Forciniti, D., Hall, C. K. & Kula, M. R. Influence of polymer molecular weight and temperature on phase composition in aqueous two-phase systems. Fluid Ph. Equilib. 61, 243–262 (1991).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the MCB Light Microscopy Imaging Facility, which is a UC-Davis Campus Core Research Facility, for the use of their spinning disk confocal fluorescence microscope. The 3i Marianas spinning disk confocal used in this study was purchased using National Institutes of Health Shared Instrumentation grant 1S10RR024543-01. W.-C.S., D.L.G. and A.N.P. acknowledge funding from the National Science Foundation (DMR-1810540). J.C.S.H. and A.N.P. acknowledge funding and support from the Singapore Centre for Environmental Life Sciences Engineering and the Institute for Digital Molecular Analytics and Science, Nanyang Technological University. C.D.K. and A.T.R. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0008633.

Author information

Authors and Affiliations

Authors

Contributions

W.-C.S., C.D.K. and A.N.P. conceived and designed the study. W.-C.S., J.C.S.H. and D.L.G. designed and executed the experimental protocols for the preparation of the vesicle system and carried out the fluorescence microscopy measurements. A.T.R. performed the polarimetry and refractometry measurements of the phase compositions. W.-C.S., J.C.S.H., C.D.K. and A.N.P. co-wrote the paper, with contributions from all authors.

Corresponding authors

Correspondence to Christine D. Keating or Atul N. Parikh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Rumiana Dimova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fluorescence intensity measurements of solution encapsulated in an LLPS GUV to determine the partition coefficient (K) of dextran in PEG-rich and dextran-rich phases.

(a, d) Normalized fluorescent intensity profile of dextran (Alexa flour® 488 dextran) in PEG-rich and dextran-rich phases after phase separation. Photobleaching effect was taken into account in the calculation (Supplementary Fig. S2). Data are presented as mean values ± 5% error, (n = 3). For the number of dextran-rich droplets measured, refer to Supplementary Data. (b, e) The ratio of fluorescence intensity of dextran-rich phase versus the PEG-rich phase. (c, f) Measurement of partition coefficient (K) of dextran in LLPS GUV. GUVs contain 96.8 mol% POPC, 2.2 mol% DOPE-mPEG, and 1 mol% Rho-DOPE encapsulate a mixture of 6 wt% PEG 8 kDa and 6.4 wt% dextran 10 kDa upon immersion in 143 mM sucrose solution.

Source data

Extended Data Fig. 2 Ostwald ripening and fusion trajectories.

Trajectory of individual droplets during coarsening in GUVs encapsulating a mixture of 6.0% (w/w) PEG 8 kDa and 6.4% (w/w) dextran 10 kDa doped with 0.001% AlexaFluor® 488-Dextran upon immersion in 143 mM sucrose solution. (a) Purely Ostwald ripening. (b) Fusion events. Arrows indicate coarsening droplets. All scale bar, 10 µm.

Extended Data Fig. 3 Membrane tubule formation.

(a-c) Selected frames from a time-lapse movie of wide-field fluorescence microscopy images of GUVs encapsulating a mixture of 6.0% (w/w) PEG 8 kDa and 6.4% (w/w) dextran 10 kDa doped with 0.001% AlexaFluor 488-Dextran upon immersion in 143 mM sucrose solution. (d) The plot refers to the line intensity measurement (ii) of the distance covered by the dash arrow on the adjacent image (i).

Extended Data Fig. 4 Examples of uncoated droplets at the membrane of GUVs.

Selected frames of confocal microscopy images of GUVs encapsulating a mixture of 6.0% (w/w) PEG 8 kDa and 6.4% (w/w) dextran 10 kDa doped with 0.001% AlexaFluor® 488-Dextran upon immersion in 143 mM sucrose solution. Trajectories are obtained from Supplementary Video S1. Arrows indicate examples of uncoated droplets at the membrane. All scale bar, 10 µm.

Extended Data Fig. 5 Droplet growth analysis for GUVs of different sizes.

(a) The plot shows exponent as a function of the starting GUV radius (top left, n = 10, where n refers to the number of GUV analyzed). Each data point refers to individual GUV. The droplet growth rate plots for individual GUV are also shown (b). Data are presented as mean values ± SD, (n = 10). For the number of dextran-rich droplets measured, refer to Source Data.

Source data

Extended Data Fig. 6 Long-term (>24 h) follow-up of bud morphological transition.

Selected frames of confocal fluorescence microscopy images of GUVs encapsulating a mixture of 6.0% (w/w) PEG 8 kDa and 6.4% (w/w) dextran 10 kDa doped with 0.001% AlexaFluor® 488-Dextran upon immersion in 143 mM sucrose solution. GUVs contain 96.8 mol% POPC, 2.2 mol% DOPE-mPEG, 1 mol% Rho-DOPE. Scale bar, 10 µm.

Extended Data Fig. 7 Reversibility of osmotic deflation driven liquid-liquid phase separation.

(a) Confocal fluorescence microscopy image of a single GUV consists of a mixture containing 96.8 mol% POPC, 2.2 mol% DOPE-mPEG, 1 mol% Rho-DOPE encapsulating 6.0 % (w/w) PEG 8 kDa and 6.4 % (w/w) dextran 10 kDa aqueous phase subjected to pure water (till exterior sucrose concentration equal to 62 mM) after hypertonic trigger deformation in 143 mM sucrose solution. Scale bar, 10 µm. (b) Box plot shows fluorescence intensity of individual dextran-rich droplets and PEG-rich phase as a function of time for the reversal kinetic analysis. Each data point refers to an individual measurement. The intensity values of PEG-rich phase are sampled at random spots within the GUV (n = 1). Mean values are indicated by the red dots. For the number of data points shown in the plot for each time point, refer to Source Data. The inset shows the ratio of fluorescence intensity of dextran-rich phase verses the PEG-rich phase.

Source data

Extended Data Fig. 8 Time-lapse confocal fluorescence microscopy image of GUVs encapsulating different LLPS mixtures.

(a) 5:1 (namely 5P1D), (b) 3:1 (namely 3P1D), (c) 1:2 (namely 1P2D) and (d) 1:6 (namely 1P6D) ratios of PEG 8 kDa and dextran 10 kDa. All GUVs imaged consist of a mixture containing 96.8 mol% POPC, 2.2 mol% DOPE-mPEG, 1 mol% Rho-DOPE encapsulating PEG and dextran mixtures doped with 0.001 wt% AlexaFluor® 488 dextran upon immersion in (a) 143, (b) 120, (c) 263, and (d) 298 mM sucrose solution. All scale bar, 10 µm.

Extended Data Fig. 9 Control GUVs without labelled dextran.

The POPC: Egg-SM: Cholesterol (2:2:1) GUV, doped with 2.2% DOPE-mPEG, 1% Rho-DOPE and 3% NBD-PE with encapsulation of 6.0% (w/w) PEG 8 kDa and 6.4% (w/w) dextran 10 kDa is immersed in 143 mM sucrose solution. Scale bar: 10 µm.

Extended Data Fig. 10 Osmotic deflation driven LLPS in PBD-PEO GUV.

(a) Selected frames from a time-lapse video of 99 % PBD-PEO GUV doped with 1% Rhodamine-DOPE, encapsulating a mixture of 6.0% (w/w) PEG 8 kDa and 6.4% (w/w) dextran 10 kDa doped with 0.001% AlexaFluor® 488-Dextran upon immersion in 143 mM sucrose. Confocal section (b) and 3D projection (c) of the final morphology are shown. All scale bar, 10 µm.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–5 and captions for Videos 1–12.

Supplementary Video 1

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 6.0% (wt/wt) PEG 8 kDa and 6.4% (wt/wt) dextran 10 kDa doped with 0.001% AlexaFluor 488-dextran.

Supplementary Video 2

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 6.0% (wt/wt) PEG 8 kDa and 6.4% (wt/wt) dextran 10 kDa doped with 0.001% AlexaFluor 488-dextran, recorded on a wide-field fluorescence microscope.

Supplementary Video 3

Reversibility of osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 6.0% (wt/wt) PEG 8 kDa and 6.4% (wt/wt) dextran 10 kDa doped with 0.001% AlexaFluor 488-dextran.

Supplementary Video 4

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 10 wt% PEG (8 kDa) and 2 wt% dextran (10 kDa) doped with 0.001% AlexaFluor 488-dextran (5P1D).

Supplementary Video 5

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 9.5 wt% PEG (8 kDa) and 3.1 wt% dextran (10 kDa) doped with 0.001% AlexaFluor 488-dextran (3P1D).

Supplementary Video 6

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 4 wt% PEG (8 kDa) and 8.3 wt% dextran (10 kDa) doped with 0.001% AlexaFluor 488-dextran (1P2D).

Supplementary Video 7

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 2.5 wt% PEG (8 kDa) and 15 wt% dextran (10 kDa) doped with 0.001% AlexaFluor 488-dextran (1P6D).

Supplementary Video 8

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs encapsulating a mixture of 4.5 wt% PEG (8 kDa) and 2.02 wt% dextran (450 kDa) doped with 0.001% AlexaFluor 488-dextran.

Supplementary Video 9

Osmotic deflation driven liquid–liquid phase separation in POPC GUVs with 4 mol% GM1 in membrane, encapsulating a mixture of 6 wt% PEG (8 kDa) and 6.4 wt% dextran (10 kDa) doped with 0.001% AlexaFluor 488-dextran.

Supplementary Video 10

Osmotic deflation driven liquid–liquid phase separation of 6 wt% PEG (8 kDa) and 6.4 wt% dextran (10 kDa) doped with 0.001% AlexaFluor 561-dextran in GUVs with ternary lipid mixtures (POPC:Egg-SM:cholesterol in a ratio of 2:2:1), doped with 1% Rho-DOPE and 3% NBD-PE.

Supplementary Video 11

Control experiment of GUVs encapsulated 6 wt% PEG (8 kDa) and 6.4 wt% dextran (10 kDa) with ternary lipid mixtures, doped with 1% Rho-DOPE and 3% NBD-PE immersed in isotonic sucrose solution.

Supplementary Video 12

Osmotic deflation driven liquid–liquid phase separation of 6 wt% PEG (8 kDa) and 6.4 wt% dextran (10 kDa) doped with 0.001% AlexaFluor 488-dextran in GUVs consisting of 99% polybutadiene1200-b-polyethyleoxide600 (PBD-PEO; the unit for the number in subscript is Dalton) GUV, doped with 1% Rho-DOPE.

Supplementary Data 1

Source data for Supplementary Fig. 1

Supplementary Data 2

Source data for Supplementary Fig. 2

Supplementary Data 3

Source data for Supplementary Fig. 3

Supplementary Data 4

Source data for Supplementary Fig. 5

Source data

Source Data Fig. 1

Raw numerical data for Fig. 1b–c.

Source Data Fig. 2

Raw numerical data for Fig. 2f–i.

Source Data Fig. 3

Raw numerical data for Fig. 3a.

Source Data Fig. 4

Raw numerical data for Fig. 4d.

Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Extended Data Fig. 5

Source data for Extended Data Fig. 5.

Extended Data Fig. 7

Source data for Extended Data Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, WC., Ho, J.C.S., Gettel, D.L. et al. Kinetic control of shape deformations and membrane phase separation inside giant vesicles. Nat. Chem. 16, 54–62 (2024). https://doi.org/10.1038/s41557-023-01267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01267-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing