Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biosynthesis and biotechnological production of the anti-obesity agent celastrol

Abstract

Obesity is a major health risk still lacking effective pharmacological treatment. A potent anti-obesity agent, celastrol, has been identified in the roots of Tripterygium wilfordii. However, an efficient synthetic method is required to better explore its biological utility. Here we elucidate the 11 missing steps for the celastrol biosynthetic route to enable its de novo biosynthesis in yeast. First, we reveal the cytochrome P450 enzymes that catalyse the four oxidation steps that produce the key intermediate celastrogenic acid. Subsequently, we show that non-enzymatic decarboxylation-triggered activation of celastrogenic acid leads to a cascade of tandem catechol oxidation-driven double-bond extension events that generate the characteristic quinone methide moiety of celastrol. Using this acquired knowledge, we have developed a method for producing celastrol starting from table sugar. This work highlights the effectiveness of combining plant biochemistry with metabolic engineering and chemistry for the scalable synthesis of complex specialized metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Combining metabolomics and transcriptomics to identify candidate celastrol biosynthetic genes in T. wilfordii.
Fig. 2: Functional characterization of CYP716C52 and its variants in S. cerevisiae.
Fig. 3: Functional characterization of CYP81AM1 and its variant in S. cerevisiae.
Fig. 4: Non-enzymatic oxidation and C24 decarboxylation of celastrogenic acid.
Fig. 5: A tandem catechol oxidation cascade leads to celastrol.
Fig. 6: Scalable de novo biosynthetic platform of celastrol production in yeast from sugar.

Similar content being viewed by others

Data availability

All data supporting the findings of this work are available within the paper and its Supplementary Information files. A reporting summary for this article is available as a Supplementary Information file. The T. wilfordii cDNA sequences identified here have been deposited in GenBank under accession numbers OP970829 to OP970833. Source data are provided with this paper.

References

  1. Olshansky, S. J. et al. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 352, 1138–1145 (2005).

    CAS  PubMed  Google Scholar 

  2. Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma, X. et al. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab. 22, 695–708 (2015).

    CAS  PubMed  Google Scholar 

  4. Hu, M. et al. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol. Cell 66, 141–153.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng, S. Z. et al. Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates. Nat. Commun. 12, 5989 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng, X. et al. IL1R1 is required for celastrol’s leptin-sensitization and antiobesity effects. Nat. Med. 25, 575–582 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Grant, P. K., Johnson, A.W., Juby, P. F. & King, T. J. 114. Pristimerin. Part III. A modified structure for the chromophore. J. Chem. Soc. 0, 549–555 (1960).

    CAS  Google Scholar 

  8. Chou, T. Q. & Mei, P. F. The principle of the Chinese drug Lei-Kung-Teng, Tripterygium wilfordii, Hook. I. The coloring substance and the sugars. Chin. J. Physiol. 10, 529–534 (1936).

    CAS  Google Scholar 

  9. Kupchan, S. M., Court, W. A., Dailey, R. G. Jr, Gilmore, C. J. & Bryan, R. F. Tumor inhibitors. LXXIV. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J. Am. Chem. Soc. 94, 7194–7195 (1972).

    CAS  PubMed  Google Scholar 

  10. Hansen, N. L. et al. Tripterygium wilfordii cytochrome P450s catalyze the methyl shift and epoxidations in the biosynthesis of triptonide. Nat. Commun. 13, 5011 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tu, L. et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat. Commun. 11, 971 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Camelio, A. M., Johnson, T. C. & Siegel, D. Total synthesis of celastrol, development of a platform to access celastroid natural products. J. Am. Chem. Soc. 137, 11864–11867 (2015).

    CAS  PubMed  Google Scholar 

  13. Li, S., Li, Y. & Smolke, C. D. Strategies for microbial synthesis of high-value phytochemicals. Nat. Chem. 10, 395–404 (2018).

    CAS  PubMed  Google Scholar 

  14. Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    CAS  PubMed  Google Scholar 

  15. Srinivasan, P. & Smolke, C. D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585, 614–619 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    CAS  PubMed  Google Scholar 

  17. Galanie, S., Thodey, K., Trenchard, I. J., Interrante, M. F. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, J. et al. Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast. New Phytol. 223, 722–735 (2019).

    CAS  PubMed  Google Scholar 

  19. Hansen, N. L. et al. Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol. Microb. Cell Fact. 19, 15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pateraki, I., Heskes, A. M. & Hamberger, B. Cytochromes P450 for Terpene Functionalisation and Metabolic Engineering, in Biotechnology of Isoprenoids (eds Schrader, J. & Bohlmann, J.) (Springer, 2015).

  21. Bach, S. S. et al. High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana. Methods Mol. Biol. 1153, 245–255 (2014).

    CAS  PubMed  Google Scholar 

  22. Bruckner, K. & Tissier, A. High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods 9, 46 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Li, K., Duan, H., Kawazoe, K. & Takaishi, Y. Terpenoids from Tripterygium wilfordii. Phytochemistry 45, 791–796 (1997).

    CAS  Google Scholar 

  24. Zhang, W., Pan, D., Zhang, L. & Shao, Y. Triterpenoids of Tripterygium wilfordii Hook-F. Acta Pharm. Sin. 21, 592–598 (1986).

    CAS  Google Scholar 

  25. Chen, K. et al. Anti-AIDS agents, 6. Salaspermic acid, an anti-HIV principle from Tripterygium wilfordii, and the structure–activity correlation with its related compounds. J. Nat. Prod. 55, 340–346 (1992).

    CAS  PubMed  Google Scholar 

  26. Grant, J. L., Hsieh, C. H. & Makris, T. M. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J. Am. Chem. Soc. 137, 4940–4943 (2015).

    CAS  PubMed  Google Scholar 

  27. Grant, J. L., Mitchell, M. E. & Makris, T. M. Catalytic strategy for carbon–carbon bond scission by the cytochrome P450 OleT. Proc. Natl Acad. Sci. USA 113, 10049–10054 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meunier, B., de Visser, S. P. & Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104, 3947–3980 (2004).

    CAS  PubMed  Google Scholar 

  29. Ren, D., Kim, M., Wang, S. A. & Liu, H. W. Identification of a pyrrole intermediate which undergoes C-glycosidation and autoxidation to yield the final product in showdomycin biosynthesis. Angew. Chem. Int. Ed. 60, 17148–17154 (2021).

    CAS  Google Scholar 

  30. Hong, B. et al. Biosynthesis of strychnine. Nature 607, 617–622 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tahir, M. N., Shahbazi, F., Rondeau-Gagné, S. & Trant, J. F. The biosynthesis of the cannabinoids. J. Cannabis Res. 3, 7 (2021).

    PubMed  PubMed Central  Google Scholar 

  32. Zi, J. & Peters, R. J. Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. Org. Biomol. Chem. 11, 7650–7652 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bolton, J. L. & Shen, L. p-Quinone methides are the major decomposition products of catechol estrogen o-quinones. Carcinogenesis 17, 925–929 (1996).

    CAS  PubMed  Google Scholar 

  34. Wang, T. et al. Comparative analysis of four terpenoids in root and cortex of Tripterygium wilfordii Radix by different drying methods. BMC Complement. Altern. Med. 16, 476 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Arnold, R. T., Elmer, O. C. & Dodson, R. Thermal decarboxylation of unsaturated acids. J. Am. Chem. Soc. 72, 4359–4361 (1950).

    CAS  Google Scholar 

  36. Li, X., Li, Z. & Sun, J. Quinone methides and indole imine methides as intermediates in enantioselective catalysis. Nat. Synth. 1, 426–438 (2022).

    Google Scholar 

  37. Yang, J., Stuart, M. A. C. & Kamperman, M. Jack of all trades: versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 43, 8271–8298 (2014).

    CAS  PubMed  Google Scholar 

  38. Valgimigli, L. et al. The unusual reaction of semiquinone radicals with molecular oxygen. J. Org. Chem. 73, 1830–1841 (2008).

    CAS  PubMed  Google Scholar 

  39. Luo, D. Q., Wang, H., Tian, X., Shao, H. J. & Liu, J. K. Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag. Sci. 61, 85–90 (2005).

    CAS  PubMed  Google Scholar 

  40. Abdel-Halim, M. S., Askoura, M., Mansour, B., Yahya, G. & El-Ganiny, A. M. In vitro activity of celastrol in combination with thymol against carbapenem-resistant Klebsiella pneumoniae isolates. J. Antibiot. 75, 679–690 (2022).

    CAS  Google Scholar 

  41. Yu, J. S. et al. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antivir. Res. 137, 49–57 (2017).

    CAS  PubMed  Google Scholar 

  42. Padilla-Montaño, N., de León Guerra, L. & Moujir, L. Antimicrobial activity and mode of action of celastrol, a nortriterpen quinone isolated from natural sources. Foods 10, 591 (2021).

    PubMed  PubMed Central  Google Scholar 

  43. Lange, B. M. et al. Integrative approaches for the identification and localization of specialized metabolites in Tripterygium roots. Plant Physiol. 173, 456–469 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Vemishetti, P., Gibson, F. S. & Dillon, J. L. Semi-synthesis of paclitaxel using dialkyldichlorosilanes. US patent 6242614B1 (2001).

  45. Li, B. J. et al. Improving 10-deacetylbaccatin III-10-β-O-acetyltransferase catalytic fitness for Taxol production. Nat. Commun. 8, 15544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vukovic, J. & Goodbody, A. E. Production of alkaloid dimers using ferric ion. US patent 4778885A (1986).

  47. Zhang, J. et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 609, 341–347 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu, Z. T. et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction. Metab. Eng. 68, 232–245 (2021).

    CAS  PubMed  Google Scholar 

  49. Zhu, Y. et al. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae. Microb. Cell Fact. 21, 230 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, P. et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high efficiency. Cell Discov. 5, 5 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Wang, P., Wang, J., Zhao, G., Yan, X. & Zhou, Z. Systematic optimization of the yeast cell factory for sustainable and high efficiency production of bioactive ginsenoside compound K. Synth. Syst. Biotechnol. 6, 69–76 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, G. S. et al. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction. Metab. Eng. 57, 151–161 (2020).

    PubMed  Google Scholar 

  53. Dusséaux, S., Wajn, W. T., Liu, Y., Ignea, C. & Kampranis, S. C. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc. Natl Acad. Sci. USA 117, 31789–31799 (2020).

    PubMed  PubMed Central  Google Scholar 

  54. Hansen, N. L. et al. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J. 89, 429–441 (2017).

    CAS  PubMed  Google Scholar 

  55. Forman, V. et al. A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis. Nat. Commun. 13, 5143 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. De La Peña, R. & Sattely, E. S. Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Nat. Chem. Biol. 17, 205–212 (2021).

    PubMed  Google Scholar 

  57. Bach, S. S. et al. in Plant Isoprenoids: Methods and Protocols (ed. Rodríguez-Concepción, M.) 245–255 (Springer, 2014).

  58. Jensen, K. & Møller, B. L. Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry 71, 132–141 (2010).

    CAS  PubMed  Google Scholar 

  59. Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Geu-Flores (University of Copenhagen), V. Roussis and E. Ioannou (National and Kapodistrian University of Athens, Greece) for critical reading of the manuscript, and H. Chen (Kunming University of Science and Technology, China) and H. Zhang (Swiss Federal Institute of Technology Lausanne, Switzerland) for discussions on the chemical mechanism. We also thank D. R. Nelson (University of Tennessee, USA) for assigning the CYP names. We thank J. Olsen, M. Ramirez, D. Pattison, I. Ovejero-Lopez and L. Kjærulff (University of Copenhagen) for their assistance in running analytical instruments. This work was financially supported by the Novo Nordisk Foundation (grants NNF17OC0027646 to S.B. and S.C.K. and NNF16OC0021760 and NNF19OC0055204 to S.C.K.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., K.M., B.L.M., S.B. and S.C.K. conceived and designed the experiments. Y.Z., N.L.H. and M.P. conducted all cloning, the engineering of N. benthamiana and S. cerevisiae, and analysed the chromatography data. Y.Z. and Y.-T.D. isolated the products from S. cerevisiae and T. wilfordii roots. Y.Z. and D.S. analysed the NMR data. M.S.M. proposed the chemical mechanism. Y.Z., I.P., K.M. and S.C.K. wrote the paper. All authors contributed to the final version of the paper.

Corresponding authors

Correspondence to Søren Bak, Karel Miettinen or Sotirios C. Kampranis.

Ethics declarations

Competing interests

S.C.K., Y.Z., K.M. and N.L.H. are co-inventors in a patent application (European Patent Office no. P101284EP00, 2022) describing the bioproduction of celastrol in yeast. The other authors claim no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jens Nielsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–35 and Tables 1–7.

Reporting Summary

Supplementary Data 1

Oligo sequences used in this study.

Supplementary Data 2

Source data for Supplementary Figs. 6 and 7.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Hansen, N.L., Duan, YT. et al. Biosynthesis and biotechnological production of the anti-obesity agent celastrol. Nat. Chem. 15, 1236–1246 (2023). https://doi.org/10.1038/s41557-023-01245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01245-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research