Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arenes participate in 1,3-dipolar cycloaddition with in situ-generated diazoalkenes

Abstract

The venerable 1,3-dipolar cycloaddition has been widely used in organic synthesis for the construction of various heterocycles. However, in its century-long history, the simple and omnipresent aromatic phenyl ring has remained a stubbornly unreactive dipolarophile. Here we report 1,3-dipolar cycloaddition between aromatic groups and diazoalkenes, generated in situ from lithium acetylides and N-sulfonyl azides. The reaction results in densely functionalized annulated cyclic sulfonamide-indazoles that can be further converted into stable organic molecules that are important in organic synthesis. The involvement of aromatic groups in the 1,3-dipolar cycloadditions broadens the synthetic utility of diazoalkenes, a family of dipoles that have been little explored so far and are otherwise difficult to access. The process described here provides a route for the synthesis of medicinally relevant heterocycles and can be extended to other arene-containing starting materials. Computational examination of the proposed reaction pathway revealed a series of finely orchestrated bond-breaking and bond-forming events that ultimately lead to the annulated products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ-generated diazoalkenes engage aromatic rings in 1,3-dipolar cycloaddition.
Fig. 2: Reaction mechanism investigation.
Fig. 3: DFT calculations support the proposed mechanism.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2166171 (1f) and CCDC 2166170 (11b). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Relevant data for this study are available within the Article and its Supplementary Information.

References

  1. Michael, A. Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester. J. Prakt. Chem. 48, 94–95 (1893).

    Article  Google Scholar 

  2. Huisgen, R. 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. 2, 565–598 (1963).

    Article  Google Scholar 

  3. Huisgen, R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. 2, 633–645 (1963).

    Article  Google Scholar 

  4. Padwa, A. (ed). 1,3-Dipolar Cycloaddition Chemistry (Wiley, 1984).

  5. Breugst, M. & Reissig, H. U. The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. 59, 12293–12307 (2020).

    Article  CAS  Google Scholar 

  6. Huisgen, R. & Knorr, R. Benzyne as a dipolarophile. Naturwissenschaften 48, 716 (1962).

  7. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Remy, R. & Bochet, C. G. Arene–alkene cycloaddition. Chem. Rev. 116, 9816–9849 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Streit, U. & Bochet, C. G. The arene–alkene photocycloaddition. Beilstein J. Org. Chem. 7, 525–542 (2011).

  10. Bott, K. Dialkylamino-substituted ethylenediazonium salts. Chem. Ber. 120, 1867–1871 (1987).

    Article  CAS  Google Scholar 

  11. Lahti, P. M. & Berson, J. A. Thermal rearrangement of an allenic diazoalkane and intermolecular capture of a diazoethene by a cyclopropene to give a common dihydropyridazine product. J. Am. Chem. Soc. 103, 7011–7012 (1981).

    Article  CAS  Google Scholar 

  12. Ando, W., Furuhata, T. & Takata, T. A highly efficient reaction of thiobenzophenone for 1-diazoalkene. Tetrahedron Lett. 26, 4499–4500 (1985).

    Article  CAS  Google Scholar 

  13. Munschauer, R. & Maas, G. 1,3-(C → O) silyl shift in α-diazo α-silyl ketones: cycloaddition reactions and kinetic proof for the β-siloxydiazoalkene intermediate. Angew. Chem. Int. Ed. 30, 306–308 (1991).

    Article  Google Scholar 

  14. Manz, B. & Maas, G. Synthesis of 5-alkylidene-4,5-dihydro-3H-1,2,4(λ3)-diazaphospholes from α-silyl-α-diazoketones and phosphaalkenes. Tetrahedron 52, 10053–10072 (1996).

    Article  CAS  Google Scholar 

  15. Antoni, P. W., Golz, C., Holstein, J. J., Pantazis, D. A. & Hansmann, M. M. Isolation and reactivity of an elusive diazoalkene. Nat. Chem. 13, 587–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Varava, P., Dong, Z., Scopelliti, R., Fadaei-Tirani, F. & Severin, K. Isolation and characterization of diazoolefins. Nat. Chem. 13, 1055–1060 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Hein, J. E. & Fokin, V. V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  19. Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

  20. Whiting, M. & Fokin, V. V. Copper-catalyzed reaction cascade: direct conversion of alkynes into N-sulfonylazetidin-2-imines. Angew. Chem. Int. Ed. 45, 3157–3161 (2006).

  21. Cho, S. H., Yoo, E. J., Bae, I. & Chang, S. Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water. J. Am. Chem. Soc. 127, 16046–16047 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Cassidy, M. P., Raushel, J. & Fokin, V. V. Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides. Angew. Chem. Int. Ed. 45, 3154–3157 (2006).

    Article  CAS  Google Scholar 

  23. Horneff, T., Chuprakov, S., Chernyak, N., Gevorgyan, V. & Fokin, V. V. Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. J. Am. Chem. Soc. 130, 14972–14974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoo, E. J. et al. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway. J. Org. Chem. 73, 5520–5528 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, S. H., Park, S. H., Choi, J. H. & Chang, S. Sulfonyl and phosphoryl azides: going further beyond the click realm of alkyl and aryl azides. Chem. Asian J. 6, 2618–2634 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Chuprakov, S., Worrell, B. T., Selander, N., Sit, R. K. & Fokin, V. V. Stereoselective 1,3-insertions of rhodium(II) azavinyl carbenes. J. Am. Chem. Soc. 136, 195–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Selander, N., Worrell, B. T., Chuprakov, S., Velaparthi, S. & Fokin, V. V. Arylation of rhodium(II) azavinyl carbenes with boronic acids. J. Am. Chem. Soc. 134, 14670–14673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Markos, A., Janecky, L., Klepetarova, B., Pohl, R. & Beier, P. Stereoselective synthesis of (Z)-β-enamido fluorides from N-fluoroalkyl- and N-sulfonyl-1,2,3-triazoles. Org. Lett. 23, 4224–4227 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Meza-Avina, M. E., Patel, M. K., Lee, C. B., Dietz, T. J. & Croatt, M. P. Selective formation of 1,5-substituted sulfonyl triazoles using acetylides and sulfonyl azides. Org. Lett. 13, 2984–2987 (2011).

  30. Smith, C. D. & Greaney, M. F. Zinc mediated azide–alkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles. Org. Lett. 15, 4826–4829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).

    Article  CAS  Google Scholar 

  32. Ruiz, C., Raya-Baron, A., Ortuno, M. A. & Fernandez, I. Accelerating role of deaggregation agents in lithium-catalysed hydrosilylation of carbonyl compounds. Dalton Trans. 49, 7932–7937 (2020).

  33. Reich, H. J. Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 113, 7130–7178 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Leroux, F. & Schlosser, M. The “aryne” route to biaryls featuring uncommon substituent patterns. Angew. Chem. Int. Ed. 41, 4272–4274 (2002).

    Article  CAS  Google Scholar 

  35. Henderson, A. R. P., Kosowan, J. R. & Wood, T. E. The Truce–Smiles rearrangement and related reactions: a review. Can. J. Chem. 95, 483–504 (2017).

    Article  CAS  Google Scholar 

  36. Holden, C. M., Sohel, S. M. & Greaney, M. F. Metal free bi(hetero)aryl synthesis: a benzyne Truce–Smiles rearrangement. Angew. Chem. Int. Ed. 55, 2450–2453 (2016).

    Article  CAS  Google Scholar 

  37. Rabet, P. T., Boyd, S. & Greaney, M. F. Metal-free intermolecular aminoarylation of alkynes. Angew. Chem. Int. Ed. 56, 4183–4186 (2017).

    Article  CAS  Google Scholar 

  38. Majumdar, K. C. & Mondal, S. Recent developments in the synthesis of fused sultams. Chem. Rev. 111, 7749–7773 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Debnath, S. & Mondal, S. Sultams: recent syntheses and applications. Eur. J. Org. Chem. 2018, 933–956 (2018).

    Article  CAS  Google Scholar 

  40. Banerjee, R., Chakraborty, H. & Sarkar, M. Photophysical studies of oxicam group of NSAIDs: piroxicam, meloxicam and tenoxicam. Spectrochim. Acta, Part A 59, 1213–1222 (2003).

    Article  Google Scholar 

  41. Liu, Z.-P. & Takeuchi, Y. New developments in the synthesis of saccharin related five- and six-membered benzosultams. Heterocycles 78, 1387–1412 (2009).

    Article  CAS  Google Scholar 

  42. Takeuchi, Y., Liu, Z., Satoh, A., Shiragami, T. & Shibata, N. Expeditious synthesis of 3,4-dihydro-2H-1λ6-benzo[e][1,2]thiazine 1,1-dioxides. Chem. Pharm. Bull. 47, 1730–1733 (1999).

    Article  CAS  Google Scholar 

  43. Jeran, M., Cotman, A. E., Stephan, M. & Mohar, B. Stereopure functionalized benzosultams via ruthenium(II)-catalyzed dynamic kinetic resolution-asymmetric transfer hydrogenation. Org. Lett. 19, 2042–2045 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Yu, C. B., Gao, K., Wang, D. S., Shi, L. & Zhou, Y. G. Enantioselective Pd-catalyzed hydrogenation of enesulfonamides. Chem. Commun. 47, 5052–5054 (2011).

    Article  CAS  Google Scholar 

  45. Cao, Y. Q., Luo, C. Y., Yang, P., Li, P. & Wu, C. L. Indazole scaffold: a generalist for marketed and clinical drugs. Med. Chem. Res. 30, 501–518 (2021).

    Article  CAS  Google Scholar 

  46. Holden, C. M. & Greaney, M. F. Modern aspects of the Smiles rearrangement. Chem. Eur. J. 23, 8992–9008 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Snape, T. J. A truce on the Smiles rearrangement: revisiting an old reaction—the Truce–Smiles rearrangement. Chem. Soc. Rev. 37, 2452–2458 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Center for Advanced Research Computing (CARC) at the University of Southern California for providing HPC resources that have contributed to the research results reported within this paper (https://carc.usc.edu). Mass spectra (MS) were acquired at the Agilent Center for Excellence in Biomolecular Characterization at USC. S.A. gratefully acknowledges support from the Dornsife College of Letters, Arts and Sciences through the Chemistry-Biology Interface T32 fellowship. A.V. acknowledges the USC Bridge Institute for their support through the BUGS program. D.B.E gratefully acknowledges Agilent Technologies for support through an Agilent Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.A.: conceptualization, investigation, condition optimization, NMR, IR and MS analysis, synthesis, manuscript writing. A.V.: computational study, manuscript writing. D.B.E.: computational study, IR study, MS processing, manuscript writing. R.P.: synthesis of azides. V.V.F.: conceptualization, project administration, resources, supervision, manuscript writing.

Corresponding author

Correspondence to Valery V. Fokin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks De-Cai Fang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details and protocols, detailed reaction optimization data, characterization data (including NMR and MS) of synthesized compounds, supplementary PES figures, visuals of reactions, MS spectra, FTIR data, X-ray crystallographic data, NMR spectra.

Supplementary Data 1

Crystallographic data for compound 1f; CCDC reference 2166171.

Supplementary Data 2

Crystallographic data for compound 11b; CCDC reference 2166170.

Supplementary Data 3

Cartesian coordinates of computational data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, S., Vu, A., Eremin, D.B. et al. Arenes participate in 1,3-dipolar cycloaddition with in situ-generated diazoalkenes. Nat. Chem. 15, 764–772 (2023). https://doi.org/10.1038/s41557-023-01188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01188-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing