Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production

Abstract

In the effort to generate sustainable clean energy from abundant resources such as water and carbon dioxide, solar fuel production—the combination of solar-light harvesting and the generation of efficient chemical energy carriers—by artificial molecular photosystems is very attractive. Molecular constituents that display attractive features for chemical energy conversion (such as high product selectivity and atom economy) have been developed, and their interfacing with host materials has enabled recyclability, controlled site positioning, as well as access to fundamental insights into the catalytic mechanism and environment-governed selectivity. Among the wide variety of supports, metal–organic frameworks (MOFs) possess valuable characteristics (such as their porosity and versatility) that can influence the reaction environment and material architecture in a unique fashion. Here we highlight the various existing synthetic strategies to graft molecular complexes such as catalysts and photosensitizers onto MOFs for solar fuel production. The opportunities and limitations of one-pot and stepwise approaches are critically assessed, and the resulting materials are discussed based on their photocatalytic performances and the practical applicability of selected examples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Combining molecular catalysis and MOFs.
Fig. 2: Mechanism of integration of molecular complexes with MOFs using the one-pot engineered linker strategy.
Fig. 3: Bottle-around-the-ship strategy to interface molecular catalysts and MOFs.
Fig. 4: Stepwise node-docking approach, allowing for controllable and high molecular loadings.
Fig. 5: Linker-docking strategy as a stepwise assembly method in which molecular loading occurs at linkers bearing anchoring sites in an assembled MOF via chelation, nucleophile substitution or hydrogen-bond interactions.
Fig. 6: Stepwise ship-in-a-bottle design with self-assembly of a molecular complex from flexible precursors within MOF pores, capitalizing on MOF cavity sizes to assemble and trap one catalyst molecule per cage, assuming maximum loading.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

    Article  CAS  Google Scholar 

  2. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  3. Armaroli, N. & Balzani, V. Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. Eur. J. 22, 32–57 (2016).

    Article  CAS  Google Scholar 

  4. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

    Article  Google Scholar 

  5. White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).

    Article  CAS  Google Scholar 

  6. Schild, J. et al. Approaching industrially relevant current densities for hydrogen oxidation with a bioinspired molecular catalytic material. J. Am. Chem. Soc. 143, 18150–18158 (2021).

    Article  CAS  Google Scholar 

  7. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  Google Scholar 

  8. DuBois, D. L. Development of molecular electrocatalysts for energy storage. Inorg. Chem. 53, 3935–3960 (2014).

    Article  CAS  Google Scholar 

  9. Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    Article  CAS  Google Scholar 

  10. Bachmeier, A. & Armstrong, F. Solar-driven proton and carbon dioxide reduction to fuels - lessons from metalloenzymes. Curr. Opin. Chem. Biol. 25, 141–151 (2015).

    Article  CAS  Google Scholar 

  11. Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

    Article  CAS  Google Scholar 

  12. Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    Article  CAS  Google Scholar 

  13. Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    Article  CAS  Google Scholar 

  14. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting. Mechanisms, challenges and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  Google Scholar 

  15. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  16. Wei, Y.-S., Zou, L., Wang, H.-F., Wang, Y. & Xu, Q. Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications. Adv. Energy Mater 12, 2003970 (2022).

    Article  CAS  Google Scholar 

  17. Luo, Y.-H., Dong, L.-Z., Liu, J., Li, S.-L. & Lan, Y.-Q. From molecular metal complex to metal-organic framework: the CO2 reduction photocatalysts with clear and tunable structure. Coordin. Chem. Rev. 390, 86–126 (2019).

    Article  CAS  Google Scholar 

  18. Mialane, P. et al. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: from synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 50, 6152–6220 (2021).

    Article  CAS  Google Scholar 

  19. Majewski, M. B., Peters, A. W., Wasielewski, M. R., Hupp, J. T. & Farha, O. K. Metal-organic frameworks as platform materials for solar fuels catalysis. ACS Energy Lett. 3, 598–611 (2018).

    Article  CAS  Google Scholar 

  20. Yoon, J.-W., Kim, J.-H., Kim, C., Jang, H. W. & Lee, J.-H. MOF-based hybrids for solar fuel production. Adv. Energy Mater. 4, 2003052 (2021).

    Article  Google Scholar 

  21. Dhakshinamoorthy, A., Li, Z. & Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 47, 8134–8172 (2018).

    Article  CAS  Google Scholar 

  22. Semrau, A. L. et al. Surface-mounted metal-organic frameworks: past, present and future perspectives. Langmuir 37, 6847–6863 (2021).

    Article  CAS  Google Scholar 

  23. Castner, A. T., Johnson, B. A., Cohen, S. M. & Ott, S. Mimicking the electron transport chain and active site of FeFe hydrogenases in one metal-organic framework. factors that influence charge transport. J. Am. Chem. Soc. 143, 7991–7999 (2021).

    Article  CAS  Google Scholar 

  24. Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal–organic frameworks. Nat. Commun. 11, 1409 (2020).

    Article  CAS  Google Scholar 

  25. Downes, C. A. & Marinescu, S. C. Electrocatalytic metal-organic frameworks for energy applications. ChemSusChem 10, 4374–4392 (2017).

    Article  CAS  Google Scholar 

  26. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

  27. Leung, J. J. et al. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2, 354–365 (2019).

    Article  CAS  Google Scholar 

  28. Reuillard, B., Warnan, J., Leung, J. J., Wakerley, D. W. & Reisner, E. A poly(cobaloxime)/carbon nanotube electrode: freestanding buckypaper with polymer-enhanced H2-evolution performance. Angew. Chem. Int. Ed. 55, 3952–3957 (2016).

    Article  CAS  Google Scholar 

  29. Hemmer, K., Cokoja, M. & Fischer, R. A. Exploitation of intrinsic confinement effects of MOFs in catalysis. ChemCatChem 13, 1683–1691 (2021).

    Article  CAS  Google Scholar 

  30. Ryu, U. J. et al. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Sci. Rep. 7, 612 (2017).

    Article  Google Scholar 

  31. Stanley, P. M. et al. Entrapped molecular photocatalyst and photosensitizer in metal-organic framework nanoreactors for enhanced solar CO2 reduction. ACS Catal. 11, 871–882 (2021).

    Article  CAS  Google Scholar 

  32. Feng, X. et al. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 142, 690–695 (2020).

    Article  CAS  Google Scholar 

  33. So, M. C., Wiederrecht, G. P., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 3501–3510 (2015).

    Article  CAS  Google Scholar 

  34. Johnson, B. A., Beiler, A. M., McCarthy, B. D. & Ott, S. Transport phenomena: challenges and opportunities for molecular catalysis in metal-organic frameworks. J. Am. Chem. Soc. 142, 11941–11956 (2020).

    Article  CAS  Google Scholar 

  35. Sharp, C. H. et al. Nanoconfinement and mass transport in metal-organic frameworks. Chem. Soc. Rev. 50, 11530–11558 (2021).

    Article  CAS  Google Scholar 

  36. Johnson, E. M., Ilic, S. & Morris, A. J. Design strategies for enhanced conductivity in metal-organic frameworks. ACS Cent. Sci. 7, 445–453 (2021).

    Article  CAS  Google Scholar 

  37. Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    Article  CAS  Google Scholar 

  38. Son, H.-J. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 135, 862–869 (2013).

    Article  CAS  Google Scholar 

  39. Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem. 54, 6821–6828 (2015).

    Article  CAS  Google Scholar 

  40. Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017).

    Article  CAS  Google Scholar 

  41. Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    Article  CAS  Google Scholar 

  42. Gao, X. et al. Zirconium-based metal-organic framework for efficient photocatalytic reduction of CO2 to CO: the influence of doped metal ions. ACS Appl. Mater. Interfaces 12, 24059–24065 (2020).

    Article  CAS  Google Scholar 

  43. An, Y. et al. Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands. Sci. Bull. 64, 1502–1509 (2019).

    Article  CAS  Google Scholar 

  44. Blake, A. J. et al. Photoreactivity examined through incorporation in metal–organic frameworks. Nat. Chem. 2, 688–694 (2010).

    Article  CAS  Google Scholar 

  45. Yang, S. et al. Elucidating charge separation dynamics in a hybrid metal-organic framework photocatalyst for light-driven H2 evolution. J. Phys. Chem. C 122, 3305–3311 (2018).

    Article  CAS  Google Scholar 

  46. Qi, X. et al. Single metal-organic cage decorated with an Ir(III) complex for CO2 photoreduction. ACS Catal. 11, 7241–7248 (2021).

    Article  CAS  Google Scholar 

  47. Lee, H. S. et al. A highly active, robust photocatalyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction. Energy Environ. Sci. 13, 519–526 (2020).

    Article  CAS  Google Scholar 

  48. Ghosh, A. C. et al. Rhodium-based metal-organic polyhedra assemblies for selective CO2 photoreduction. J. Am. Chem. Soc. 144, 3626–3636 (2022).

    Article  CAS  Google Scholar 

  49. Chang, Q. et al. Metal-organic cages with {SiW9Ni4} polyoxotungstate nodes. Angew. Chem. Int. Ed. 61, e202117637 (2022).

    Article  CAS  Google Scholar 

  50. Mollick, S., Fajal, S., Mukherjee, S. & Ghosh, S. K. Stabilizing metal-organic polyhedra (MOP): issues and strategies. Chem. Asian J. 14, 3096–3108 (2019).

    Article  CAS  Google Scholar 

  51. Juan-Alcañiz, J., Gascon, J. & Kapteijn, F. Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J. Mater. Chem. 22, 10102 (2012).

    Article  Google Scholar 

  52. Li, N. et al. Adenine components in biomimetic metal-organic frameworks for efficient CO2 photoconversion. Angew. Chem. Int. Ed. 58, 5226–5231 (2019).

    Article  CAS  Google Scholar 

  53. Bennett, T. H. et al. Jolly green MOF. Confinement and photoactivation of photosystem I in a metal-organic framework. Nanoscale Adv. 1, 94–104 (2019).

    Article  CAS  Google Scholar 

  54. Kollmannsberger, K. L. et al. From phosphine-stabilised towards naked Au8 clusters through ZIF-8 encapsulation. Mol. Syst. Des. Eng. 6, 876–882 (2021).

    Article  CAS  Google Scholar 

  55. Liédana, N., Galve, A., Rubio, C., Téllez, C. & Coronas, J. CAF@ZIF-8. One-step encapsulation of caffeine in MOF. ACS Appl. Mater. Interfaces 4, 5016–5021 (2012).

    Article  Google Scholar 

  56. Shieh, F.-K. et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach. Size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc. 137, 4276–4279 (2015).

    Article  CAS  Google Scholar 

  57. Luo, Y. et al. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: a facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 30, 1704576 (2018).

    Article  Google Scholar 

  58. Luo, Y.-C. et al. Heterogenization of photochemical molecular devices: embedding a metal-organic cage into a ZIF-8-derived matrix to promote proton and electron transfer. J. Am. Chem. Soc. 141, 13057–13065 (2019).

    Article  CAS  Google Scholar 

  59. Zhang, Z.-M. et al. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate. J. Am. Chem. Soc. 137, 3197–3200 (2015).

    Article  CAS  Google Scholar 

  60. Chen, W.-H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R. & Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat. Catal. 1, 689–695 (2018).

    Article  CAS  Google Scholar 

  61. Schrimpf, W. et al. Chemical diversity in a metal–organic framework revealed by fluorescence lifetime imaging. Nat. Commun. 9, 1647 (2018).

    Article  Google Scholar 

  62. Kim, M., Cahill, J. F., Su, Y., Prather, K. A. & Cohen, S. M. Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal-organic frameworks. Chem. Sci. 3, 126–130 (2012).

    Article  CAS  Google Scholar 

  63. Stanley, P. M. & Warnan, J. Molecular dye-sensitized photocatalysis with metal-organic framework and metal oxide colloids for fuel production. Energies 14, 4260 (2021).

    Article  CAS  Google Scholar 

  64. Willkomm, J. et al. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chem. Soc. Rev. 45, 9–23 (2016).

    Article  CAS  Google Scholar 

  65. Choi, S. et al. Rapid exciton migration and amplified funneling effects of multi-porphyrin arrays in a Re(I)/porphyrinic MOF hybrid for photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 13, 2710–2722 (2021).

    Article  CAS  Google Scholar 

  66. Chambers, M. B. et al. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. ChemSusChem 8, 603–608 (2015).

    Article  CAS  Google Scholar 

  67. Benseghir, Y. et al. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework. In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 142, 9428–9438 (2020).

    Article  CAS  Google Scholar 

  68. Kajiwara, T. et al. Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(II)-CO complex. Angew. Chem. Int. Ed. 55, 2697–2700 (2016).

    Article  CAS  Google Scholar 

  69. Kim, D., Whang, D. R. & Park, S. Y. Self-healing of molecular catalyst and photosensitizer on metal-organic framework. Robust molecular system for photocatalytic H2 evolution from water. J. Am. Chem. Soc. 138, 8698–8701 (2016).

    Article  CAS  Google Scholar 

  70. Karmakar, S., Barman, S., Rahimi, F. A. & Maji, T. K. Covalent grafting of molecular photosensitizer and catalyst on MOF-808. Effect of pore confinement toward visible light-driven CO2 reduction in water. Energy Environ. Sci. 14, 2429–2440 (2021).

    Article  CAS  Google Scholar 

  71. Stanley, P. M. et al. Host-guest interactions in metal-organic framework isoreticular series for molecular photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 17854–17860 (2021).

    Article  CAS  Google Scholar 

  72. Paille, G. et al. A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal-organic framework for water oxidation. J. Am. Chem. Soc. 140, 3613–3618 (2018).

    Article  CAS  Google Scholar 

  73. Han, J. et al. Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Appl. Catal. A Gen. 521, 83–89 (2016).

    Article  CAS  Google Scholar 

  74. Deng, X., Albero, J., Xu, L., García, H. & Li, Z. Construction of a stable Ru-Re hybrid system based on multifunctional MOF-253 for efficient photocatalytic CO2 reduction. Inorg. Chem. 57, 8276–8286 (2018).

    Article  CAS  Google Scholar 

  75. Zhuo, T.-C. et al. H-bond-mediated selectivity control of formate versus CO during CO2 photoreduction with two cooperative Cu/X sites. J. Am. Chem. Soc. 143, 6114–6122 (2021).

    Article  CAS  Google Scholar 

  76. Wang, X., Wisser, F. M., Canivet, J., Fontecave, M. & Mellot-Draznieks, C. Immobilization of a full photosystem in the large-pore MIL-101 metal-organic framework for CO2 reduction. ChemSusChem 11, 3315–3322 (2018).

    Article  CAS  Google Scholar 

  77. Hu, H. et al. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    Article  CAS  Google Scholar 

  78. Roy, S., Bhunia, A., Schuth, N., Haumann, M. & Ott, S. Light-driven hydrogen evolution catalyzed by a cobaloxime catalyst incorporated in a MIL-101(Cr) metal-organic framework. Sustain. Energy Fuels 2, 1148–1152 (2018).

    Article  CAS  Google Scholar 

  79. Yuan, S. et al. Stable metal-organic frameworks: design, synthesis and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  80. McCormick, T. M. et al. Impact of ligand exchange in hydrogen production from cobaloxime-containing photocatalytic systems. Inorg. Chem. 50, 10660–10666 (2011).

    Article  CAS  Google Scholar 

  81. Stanley, P. M., Parkulab, M., Rieger, B., Warnan, J. & Fischer, R. A. Understanding entrapped molecular photosystem and metal-organic framework synergy for improved solar fuel production. Faraday Discuss. 231, 281–297 (2021).

    Article  CAS  Google Scholar 

  82. Chen, Y. et al. Integration of enzymes and photosensitizers in a hierarchical mesoporous metal-organic framework for light-driven CO2 reduction. J. Am. Chem. Soc. 142, 1768–1773 (2020).

    Article  CAS  Google Scholar 

  83. Nepal, B. & Das, S. Sustained water oxidation by a catalyst cage-isolated in a metal-organic framework. Angew. Chem. Int. Ed. 52, 7224–7227 (2013).

    Article  CAS  Google Scholar 

  84. Li, Z., Xiao, J.-D. & Jiang, H.-L. Encapsulating a Co(II) molecular photocatalyst in metal-organic framework for visible-light-driven H2 production. Boosting catalytic efficiency via spatial charge separation. ACS Catal. 6, 5359–5365 (2016).

    Article  CAS  Google Scholar 

  85. Nasalevich, M. A. et al. Co@NH2-MIL-125(Ti): cobaloxime-derived metal-organic framework-based composite for light-driven H2 production. Energy Environ. Sci. 8, 364–375 (2015).

    Article  CAS  Google Scholar 

  86. Meyer, K. et al. Photocatalyzed hydrogen evolution from water by a composite catalyst of NH2-MIL-125(Ti) and surface nickel(II) species. Chem. Eur. J. 22, 13894–13899 (2016).

    Article  CAS  Google Scholar 

  87. Yan, Z.-H. et al. Encapsulating a Ni(II) molecular catalyst in photoactive metal-organic framework for highly efficient photoreduction of CO2. Sci. Bull. 64, 976–985 (2019).

    Article  CAS  Google Scholar 

  88. Artero, V. & Fontecave, M. Solar fuels generation and molecular systems. Is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

    Article  CAS  Google Scholar 

  89. Warnan, J. & Reisner, E. Synthetic organic design for solar fuel systems. Angew. Chem. Int. Ed. 59, 17344–17354 (2020).

    Article  CAS  Google Scholar 

  90. Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T. & Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016).

    Article  CAS  Google Scholar 

  91. Wang, D.-G. et al. Covalent organic framework-based materials for energy applications. Energy Environ. Sci. 14, 688–728 (2021).

    Article  CAS  Google Scholar 

  92. Rahman, M., Tian, H. & Edvinsson, T. Revisiting the limiting factors for overall water-splitting on organic photocatalysts. Angew. Chem. Int. Ed 59, 16278–16293 (2020).

    Article  CAS  Google Scholar 

  93. Banerjee, T. et al. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime Co-catalysts. J. Am. Chem. Soc. 139, 16228–16234 (2017).

    Article  CAS  Google Scholar 

  94. Fu, Z. et al. A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chem. Sci. 11, 543–550 (2020).

    Article  CAS  Google Scholar 

  95. Wang, H.-Y. et al. Photocatalytic hydrogen evolution from rhenium(I) complexes to FeFe hydrogenase mimics in aqueous SDS micellar systems. A biomimetic pathway. Langmuir 26, 9766–9771 (2010).

    Article  CAS  Google Scholar 

  96. Pannwitz, A. et al. Roadmap towards solar fuel synthesis at the water interface of liposome membranes. Chem. Soc. Rev. 50, 4833–4855 (2021).

    Article  CAS  Google Scholar 

  97. Qureshi, M. & Takanabe, K. Insights on measuring and reporting heterogeneous photocatalysis: efficiency definitions and setup examples. Chem. Mater. 29, 158–167 (2017).

    Article  CAS  Google Scholar 

  98. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  99. Liu, B., Vikrant, K., Kim, K.-H., Kumar, V. & Kailasa, S. K. Critical role of water stability in metal-organic frameworks and advanced modification strategies for the extension of their applicability. Environ. Sci. Nano 7, 1319–1347 (2020).

    Article  CAS  Google Scholar 

  100. Roy, S. et al. Electrocatalytic hydrogen evolution from a cobaloxime-based metal-organic framework thin film. J. Am. Chem. Soc. 141, 15942–15950 (2019).

    Article  CAS  Google Scholar 

  101. Kornienko, N. Operando spectroscopy of nanoscopic metal/covalent organic framework electrocatalysts. Nanoscale 13, 1507–1514 (2021).

    Article  CAS  Google Scholar 

  102. Shaikh, S. M. et al. Role of a 3D structure in energy transfer in mixed-ligand metal-organic frameworks. J. Phys. Chem. C 125, 22998–23010 (2021).

    Article  CAS  Google Scholar 

  103. Singh, A. K., Montoya, J. H., Gregoire, J. M. & Persson, K. A. Robust and synthesizable photocatalysts for CO2 reduction. A data-driven materials discovery. Nat. Commun. 10, 443 (2019).

    Article  CAS  Google Scholar 

  104. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.M.S. thanks the Chemical Industry Fonds (FCI) for a PhD fellowship. J.H. and N.B.S. thank the TUM Institute for Advanced Study (IAS) for funding. This work was supported by the German Research Foundation (DFG) Priority Program 1928 ‘Coordination Networks: Building Blocks for Functional Systems’, the research project MOFMOX (grant no. FI 502/43-1) and the Excellence Cluster 2089 ‘e-conversion’ (Fundamentals of Energy Conversion Processes).

Author information

Authors and Affiliations

Authors

Contributions

P.M.S., J.H. and J.W. conceived the idea and outline for this Review and wrote the manuscript with contributions from N.B.S. and R.A.F. All authors have approved the final version of this manuscript.

Corresponding author

Correspondence to J. Warnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Table 2

Source data used to compile Table 2 including brief category and synthesis descriptions, as well as the references backing the presented data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, P.M., Haimerl, J., Shustova, N.B. et al. Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 14, 1342–1356 (2022). https://doi.org/10.1038/s41557-022-01093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01093-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing