Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO2

Abstract

The isotopic labelling of small molecules is integral to drug development and for understanding biochemical processes. The preparation of carbon-labelled α-amino acids remains difficult and time consuming, with established methods involving label incorporation at an early stage of synthesis. This explains the high cost and scarcity of C-labelled products and presents a major challenge in 11C applications (11C t1/2 = 20 min). Here we report that aldehydes catalyse the isotopic carboxylate exchange of native α-amino acids with *CO2 (* = 14, 13, 11). Proteinogenic α-amino acids and many non-natural variants containing diverse functional groups undergo labelling. The reaction probably proceeds via the trapping of *CO2 by imine-carboxylate intermediates to generate iminomalonates that are prone to monodecarboxylation. Tempering catalyst electrophilicity was key to preventing irreversible aldehyde consumption. The pre-generation of the imine carboxylate intermediate allows for the rapid and late-stage 11C-radiolabelling of α-amino acids in the presence of [11C]CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isotopic labelling of α-amino acids.
Fig. 2: Optimization experiments.
Fig. 3: Aldehyde-catalysed carboxylate exchange of α-amino acids with [11C]CO2.
Fig. 4: Mechanistic studies probing the nature of isotopic carboxylate exchange.
Fig. 5: Simplified potential mechanism of the aldehyde-catalysed isotopic carboxylate exchange of α-amino acids.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry (WILEY-VCH, 2009).

  2. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Lin, M. T. et al. A rapid and robust method for selective isotope labeling of proteins. Methods 55, 370–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Bio. 7, 952–958 (2006).

    Article  CAS  Google Scholar 

  6. Voges, R., Heyes, J. R. & Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon‐14 (John Wiley & Sons, 2009).

  7. Dell’isola, A. et al. Synthesis of carbon-14-labelled peptides. J. Label. Comp. Radiopharm. 62, 713–717 (2019).

    Article  Google Scholar 

  8. Huang, C. & McConathy, J. Radiolabeled amino acids for oncologic imaging. J. Nucl. Med. 54, 1007–1010 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Galldiks, N. & Langen, K. J. Applications of PET imaging of neurological tumors with radiolabeled amino acids. Q. J. Nucl. Med. Mol. Imaging 59, 70–82 (2015).

    CAS  PubMed  Google Scholar 

  10. Jager, P. L. et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med. 42, 432–445 (2001).

    CAS  PubMed  Google Scholar 

  11. Krauser, J. A. A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development. J. Label. Comp. Radiopharm. 56, 441–446 (2013).

    Article  CAS  Google Scholar 

  12. Jacobson, O., Kiesewetter, D. O. & Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjugate Chem. 26, 1–18 (2015).

    Article  CAS  Google Scholar 

  13. Derdau, V. New trends and applications in cyanation isotope chemistry. J. Label. Comp. Radiopharm. 61, 1012–1023 (2018).

    Article  CAS  Google Scholar 

  14. Bragg, R. A., Sardana, M., Artelsmair, M. & Elmore, C. S. New trends and applications in carboxylation for isotope chemistry. J. Label. Comp. Radiopharm. 61, 934–948 (2018).

    Article  CAS  Google Scholar 

  15. Harding, J. R., Hughes, R. A., Kelly, N. M., Sutherland, A. & Willis, C. L. Syntheses of isotopically labelled l-α-amino acids with an asymmetric centre at C-3. J. Chem. Soc. Perkin Trans.1 20, 3406–3416 (2000).

    Article  Google Scholar 

  16. Augustyniak, W., Kański, R. & Kańska, M. Synthesis of carbon-14 labeled [1–14C]-, and [2–14C]-l-tyrosine. J. Label. Comp. Radiopharm. 44, 553–560 (2001).

  17. Pająk, M., Pałka, K., Winnicka, E. & Kańska, M. The chemo- enzymatic synthesis of labeled l-amino acids and some of their derivatives. J. Radioanal. Nucl. Chem. 317, 643–666 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pekošak, A., Filp, U., Poot, A. J. & Windhorst, A. D. From carbon-11-labeled amino acids to peptides in positron emission tomography: the synthesis and clinical application. Mol. Imaging Biol. 20, 510–532 (2018).

    Article  PubMed  Google Scholar 

  19. Song, F., Salter, R. & Weaner, L. E. A short synthesis of d-[1–14C]-serine of high enantiomeric purity. J. Label. Comp. Radiopharm. 58, 173–176 (2015).

    Article  CAS  Google Scholar 

  20. Rees, D. O., Bushby, N., Harding, J. R., Song, C. & Willis, C. L. Synthesis of isotopically labelled amino acids. J. Label. Comp. Radiopharm. 50, 399–401 (2007).

    Article  CAS  Google Scholar 

  21. Ling, J. R., Bronwen Cooper, P., Parker, S. J. & Armstead, I. P. Production and purification of mixed 14C-labelled peptides derived from plant biomass. J. Label. Comp. Radiopharm. 31, 417–426 (1992).

    Article  CAS  Google Scholar 

  22. LeMaster, D. M. & Cronan, J. E. Jr. Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. J. Biol. Chem. 257, 1224–1230 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Xing, J. et al. High-yielding automated convergent synthesis of no-carrier-added [11C-carbonyl]-labeled amino acids using the Strecker reaction. Synlett 28, 371–375 (2017).

    CAS  PubMed  Google Scholar 

  24. Vāvere, A. L. & Snyder, S. E. Synthesis of l-[methyl-11C]methionine ([11C]MET). In Radiochemical Syntheses (eds Hockley, B. G. & Scott, P. J. H.) 199–212 (Wiley, 2012).

  25. Filp, U. et al. Efficient synthesis of 11C-acrylesters, 11C-acrylamides and their application in Michael addition reactions for PET tracer development. Eur. J. Org. Chem. 2017, 5154–5162 (2017).

    Article  CAS  Google Scholar 

  26. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C−H Functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    Article  CAS  Google Scholar 

  27. Pony, Yu,R., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  Google Scholar 

  28. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng, X. et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed. 58, 2580–2605 (2019).

    Article  CAS  Google Scholar 

  30. Yeung, C. S. Photoredox catalysis as a strategy for CO2 incorporation: direct access to carboxylic acids from a renewable feedstock. Angew. Chem. Int. Ed. 58, 5492–5502 (2019).

    Article  CAS  Google Scholar 

  31. Tortajada, A., Juliá-Hernández, F., Börjesson, M., Moragas, T. & Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. 57, 15948–15982 (2018).

    Article  CAS  Google Scholar 

  32. Destro, G. et al. Transition-metal-free carbon isotope exchange of phenyl acetic acids. Angew. Chem. Int. Ed. 59, 13490–13495 (2020).

    Article  CAS  Google Scholar 

  33. Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Kong, D. et al. Fast carbon isotope exchange of carboxylic acids enabled by organic photoredox catalysis. J. Am. Chem. Soc. 143, 2200–2206 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Babin, V. et al. Photochemical strategy for carbon isotope exchange with CO2. ACS Catal. 11, 2968–2976 (2021).

    Article  CAS  Google Scholar 

  36. Snider, M. J. & Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 122, 11507–11508 (2000).

    Article  CAS  Google Scholar 

  37. Hinsinger, K. & Pieters, G. The emergence of carbon isotope exchange. Angew. Chem. Int. Ed. 58, 9678–9680 (2019).

    Article  CAS  Google Scholar 

  38. Kingston, C. et al. Direct carbon isotope exchange through decarboxylative carboxylation. J. Am. Chem. Soc. 141, 774–779 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao, L.-L. et al. α-Amino acids and peptides as bifunctional reagents: carbocarboxylation of activated alkenes via recycling CO2. J. Am. Chem. Soc. 143, 2812–2821 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Silverman, R. B. (ed.) in Organic Chemistry of Enzyme-Catalyzed Reactions (Second Edition) Ch. 8, 321–357 (Academic, 2002).

  41. Li, T. F., Huo, L., Pulley, C. & Liu, A. M. Decarboxylation mechanisms in biological system. Bioorganic Chem. 43, 2–14 (2012).

    Article  CAS  Google Scholar 

  42. Claes, L., Janssen, M. & De Vos, D. E. Organocatalytic decarboxylation of amino acids as a route to bio-based amines and amides. ChemCatChem 11, 4297–4306 (2019).

    Article  CAS  Google Scholar 

  43. Mitulovi, G., Lämmerhofer, M., Maier, N. M. & Lindner, W. Simple and efficient preparation of (R)- and (S)-enantiomers of α-carbon deuterium-labelled α-amino acids. J. Label. Comp. Radiopharm. 43, 449–461 (2000).

    Article  CAS  Google Scholar 

  44. Yoshida, T., Fujita, K. & Nagasawa, T. Novel reversible Indole-3-carboxylate decarboxylase catalyzing nonoxidative decarboxylation. Biosci. Biotech. Biochem. 66, 2388–2394 (2002).

    Article  CAS  Google Scholar 

  45. Kluger, R. Decarboxylation, CO2 and the reversion problem. Acc. Chem. Res. 48, 2843–2849 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Steffens, L. et al. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 592, 784–788 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Talbot, A., Sallustrau, A., Goudet, A., Taran, F. & Audisio, D. Investigation on the stoichiometry of carbon dioxide in isotope-exchange reactions with phenylacetic acids. Synlett 33, 171–176 (2021).

  48. Pratihar, S. Electrophilicity and nucleophilicity of commonly used aldehydes. Org. Biomol. Chem. 12, 5781–5788 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Zimmermann, V., Beller, M. & Kragl, U. Modelling the reaction course of a dynamic kinetic resolution of amino acid derivatives: identifying and overcoming bottlenecks. Org. Process Res. Dev. 10, 622–627 (2006).

    Article  CAS  Google Scholar 

  50. Harada, M., Shimbo, K. & Karakawa, S. Preparation of racemic α-amino acid standards for accurate mass spectrometric analysis via racemization catalyzed by a hydrophobic pyridoxal derivative. Talanta 234, 122661 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Nian, Y. et al. Recyclable ligands for the non-enzymatic dynamic kinetic resolution of challenging α-amino acids. Angew. Chem. Int. Ed. 54, 12918–12922 (2015).

    Article  CAS  Google Scholar 

  52. Dikusar, E. A. & Potkin, V. I. Synthesis of water-soluble lithium, sodium, potassium, and cesium salts of (E)-2-[4-methoxy(3,4-dimethoxy)-benzylideneamino]-2-alkyl(aralkyl)acetic acids. Russ. J. Gen. Chem. 83, 2272–2275 (2013).

    Article  CAS  Google Scholar 

  53. Grigg, R. & Gunaratne, H. Q. N. The mechanism of the racemisation of α-amino acids in the presence of aldehydes. Tetrahedron Lett. 24, 4457–4460 (1983).

    Article  CAS  Google Scholar 

  54. Callahan, B. P. & Wolfenden, R. Charge development in the transition state for decarboxylations in water: spontaneous and acetone-catalyzed decarboxylation of aminomalonate. J. Am. Chem. Soc. 126, 4514–4515 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Tang, S., Zhang, X., Sun, J., Niu, D. & Chruma, J. J. 2-Azaallyl anions, 2-azaallyl cations, 2-azaallyl radicals, and azomethine ylides. Chem. Rev. 118, 10393–10457 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Fujihara, H. & Schowen, R. L. Facile, economical synthesis of L-[α-2H]-α-amino acids. J. Org. Chem. 49, 2819–2820 (1984).

    Article  CAS  Google Scholar 

  57. Thanassi, J. W. Aminomalonic acid. Spontaneous decarboxylation and reaction with 5-deoxypyridoxal. Biochemistry 9, 525–532 (1970).

    Article  CAS  PubMed  Google Scholar 

  58. Guo, C.-X., Zhang, W.-Z., Zhou, H., Zhang, N. & Lu, X.-B. Access to α-arylglycines by umpolung carboxylation of aromatic imines with carbon dioxide. Chem. Eur. J. 22, 17156–17159 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support was provided by NSERC Canada (RGPIN-2019-06050 and RGPAS-2019-00051 to R.J.L., RGPIN-2017-06167 to B.H.R., CGS-D fellowship to M.G.J.D., PGS-D fellowship to B.A.M., PGS-D fellowship to C.J.C.C.), the Canadian Foundation for Innovation (IOF 32691 to R.J.L., JELF 36848 to B.H.R.), the Province of Alberta (AGES fellowship to O.B., AGES fellowship to M.G.J.D., AGES fellowship to C.J.C.C.), the Province of Ontario (ER17-13-119 to B.H.R.), and the University of Ottawa Heart Institute (Endowed Fellowship to M.M.). We thank Marcelo Muñoz for HPLC recommendations as well as Béla Reiz and Angelina Morales-Izquierdo for assistance with mass spectrometry studies.

Author information

Authors and Affiliations

Authors

Contributions

O.B., M.G.J.D. and C.J.C.C. designed and performed experiments and analysed data related to studies involving 13C. D.K. conducted the selected 13C scope studies. M.M. and B.A.M. designed and performed experiments and analysed data related to studies involving 11C. A.B. and V.D. designed and performed experiments and analysed data related to studies involving 14C. R.J.L. and B.H.R. directed the research, R.J.L. conceived the project and prepared the manuscript, all authors contributed to discussion.

Corresponding authors

Correspondence to Benjamin H. Rotstein or Rylan J. Lundgren.

Ethics declarations

Competing interests

V.D. and A.B. are employees of Sanofi and may hold shares or options of the company. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Chad Elmore, Da-Gang Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General considerations, procedures, additional scope and mechanistic information, compound characterization and data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bsharat, O., Doyle, M.G.J., Munch, M. et al. Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO2. Nat. Chem. 14, 1367–1374 (2022). https://doi.org/10.1038/s41557-022-01074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01074-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing