Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping

Abstract

Organic room-temperature phosphorescence, a spin-forbidden radiative process, has emerged as an interesting but rare phenomenon with multiple potential applications in optoelectronic devices, biosensing and anticounterfeiting. Covalent organic frameworks (COFs) with accessible nanoscale porosity and precisely engineered topology can offer unique benefits in the design of phosphorescent materials, but these are presently unexplored. Here, we report an approach of covalent doping, whereby a COF is synthesized by copolymerization of halogenated and unsubstituted phenyldiboronic acids, allowing for random distribution of functionalized units at varying ratios, yielding highly phosphorescent COFs. Such controlled halogen doping enhances the intersystem crossing while minimizing triplet–triplet annihilation by diluting the phosphors. The rigidity of the COF suppresses vibrational relaxation and allows a high phosphorescence quantum yield (ΦPhos ≤ 29%) at room temperature. The permanent porosity of the COFs and the combination of the singlet and triplet emitting channels enable a highly efficient COF-based oxygen sensor, with an ultra-wide dynamic detection range (~103–10−5 torr of partial oxygen pressure).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Covalent doping of COF-1 with halogens.
Fig. 2: Chemical characterization of halogen-doped COFs.
Fig. 3: Photophysical properties of doped COFs.
Fig. 4: Oxygen sensitivity analysis of BrCOF-13 phosphorescence.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files and also from the corresponding authors upon reasonable request. Supplementary crystallographic information files have been deposited with the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers ClPBA: CCDC 2119959 and BrPBA: CCDC 2119960. They can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Côté, A. P. et al. Crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  2. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article  CAS  Google Scholar 

  3. Keller, N. & Bein, T. Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 50, 1813–1845 (2021).

    Article  CAS  Google Scholar 

  4. Jadhav, T. et al. 2D poly (arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed. 58, 13753–13757 (2019).

    Article  CAS  Google Scholar 

  5. Dalapati, S., Jin, E., Addicoat, M., Heine, T. & Jiang, D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 5797–5800 (2016).

    Article  CAS  Google Scholar 

  6. Evans, A. M. et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J. Am. Chem. Soc. 141, 19728–19735 (2019).

    Article  CAS  Google Scholar 

  7. Ding, S.-Y. et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II). J. Am. Chem. Soc. 138, 3031–3037 (2016).

    Article  CAS  Google Scholar 

  8. Wang, S. et al. Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. J. Mater. Chem. C 6, 5369–5374 (2018).

    Article  CAS  Google Scholar 

  9. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article  CAS  Google Scholar 

  10. Kenry, Chen, C. & Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 10, 2111 (2019).

  11. Bolton, O., Lee, K., Kim, H. J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 3, 205–210 (2011).

    Article  CAS  Google Scholar 

  12. An, Z. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 14, 685–690 (2015).

    Article  CAS  Google Scholar 

  13. Yang, J. et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 9, 840 (2018).

    Article  Google Scholar 

  14. Hamzehpoor, E. & Perepichka, D. F. Crystal engineering of room temperature phosphorescence in organic solids. Angew. Chem. Int. Ed. 59, 9977–9981 (2020).

    Article  CAS  Google Scholar 

  15. Ye, W. et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 20, 1539–1544 (2021).

    Article  CAS  Google Scholar 

  16. Gu, M. et al. Polymorphism-dependent dynamic ultralong organic phosphorescence. Research 2020, 8183450 (2020).

    Article  CAS  Google Scholar 

  17. Lee, J. et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15, 92–98 (2016).

    Article  CAS  Google Scholar 

  18. Yum, J.-H. et al. Phosphorescent energy relay dye for improved light harvesting response in liquid dye-sensitized solar cells. Energy Environ. Sci. 3, 434–437 (2010).

    Article  CAS  Google Scholar 

  19. Tabachnyk, M., Ehrler, B., Bayliss, S., Friend, R. H. & Greenham, N. C. Triplet diffusion in singlet exciton fission sensitized pentacene solar cells. Appl. Phys. Lett. 103, 190–191 (2013).

    Article  Google Scholar 

  20. Wan, S., Zhou, H., Lin, J. & Lu, W. A prototype of a volumetric three‐dimensional display based on programmable photo‐activated phosphorescence. Angew. Chem. Int. Ed. 132, 8494–8498 (2020).

    Article  Google Scholar 

  21. Filidou, V. et al. Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nat. Phys. 8, 596–600 (2012).

    Article  CAS  Google Scholar 

  22. Wu, Z. et al. Persistent room temperature phosphorescence from triarylboranes: a combined experimental and theoretical study. Angew. Chem. Int. Ed. 132, 17285–17292 (2020).

    Article  Google Scholar 

  23. Hackney, H. E. & Perepichka, D. F. Recent advances in room temperature phosphorescence of crystalline boron containing organic compounds. Aggregate 3, e123 (2022).

    Article  Google Scholar 

  24. Yuan, W. Z. et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C 114, 6090–6099 (2010).

    Article  CAS  Google Scholar 

  25. Yan, X. et al. Recent advances on host-guest material systems toward organic room temperature phosphorescence. Small 18, 2104073 (2022).

    Article  CAS  Google Scholar 

  26. Chen, C. et al. Carbazole isomers induce ultralong organic phosphorescence. Nat. Mater. 20, 175–180 (2021).

    Article  Google Scholar 

  27. Nangia, A. K. & Desiraju, G. R. Crystal engineering: an outlook for the future. Angew. Chem. Int. Ed. 58, 4100–4107 (2019).

    Article  CAS  Google Scholar 

  28. Deng, H. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  Google Scholar 

  29. Qin, J.-S., Yuan, S., Wang, Q., Alsalme, A. & Zhou, H.-C. Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J. Mater. Chem. A 5, 4280–4291 (2017).

    Article  CAS  Google Scholar 

  30. Yeung, H. H. M. et al. Ligand‐directed control over crystal structures of inorganic-organic frameworks and formation of solid solutions. Angew. Chem. Int. Ed. 52, 5544–5547 (2013).

    Article  CAS  Google Scholar 

  31. Li, R. L. et al. Two-dimensional covalent organic framework solid solutions. J. Am. Chem. Soc. 143, 7081–7087 (2021).

    Article  CAS  Google Scholar 

  32. Lakshmi, V. et al. A two-dimensional poly (azatriangulene) covalent organic framework with semiconducting and paramagnetic states. J. Am. Chem. Soc. 142, 2155–2160 (2020).

    Article  CAS  Google Scholar 

  33. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    Article  CAS  Google Scholar 

  34. Rotter, J. M. et al. Highly conducting Wurster-type twisted covalent organic frameworks. Chem. Sci. 11, 12843–12853 (2020).

    Article  CAS  Google Scholar 

  35. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    Article  CAS  Google Scholar 

  36. Kuno, S., Kanamori, T., Yijing, Z., Ohtani, H. & Yuasa, H. Long persistent phosphorescence of crystalline phenylboronic acid derivatives: photophysics and a mechanistic study. ChemPhotoChem 1, 102–106 (2017).

    Article  CAS  Google Scholar 

  37. Hamzehpoor, E. et al. Room temperature phosphorescence vs triplet-triplet annihilation in N-substituted acridone solids. J. Phys. Chem. Lett. 12, 6431–6438 (2021).

    Article  CAS  Google Scholar 

  38. Tokunaga, Y., Ueno, H. & Shimomura, Y. Formation of boroxine: its stability and thermodynamic parameters in solution. Heterocycles 57, 787–790 (2002).

    Article  CAS  Google Scholar 

  39. Tilford, R. W., Mugavero, S. J. III, Pellechia, P. J. & Lavigne, J. J. Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741–2746 (2008).

    Article  CAS  Google Scholar 

  40. Gao, J. & Jiang, D. Covalent organic frameworks with spatially confined guest molecules in nanochannels and their impacts on crystalline structures. Chem. Commun. 52, 1498–1500 (2016).

    Article  CAS  Google Scholar 

  41. Chai, Z. et al. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behavior and the molecular packing, and the potential related applications. Chem. Sci. 8, 8336–8344 (2017).

    Article  CAS  Google Scholar 

  42. Wang, X.-D. & Wolfbeis, O. S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43, 3666–3761 (2014).

    Article  CAS  Google Scholar 

  43. Han, B.-H., Manners, I. & Winnik, M. A. Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films. Chem. Mater. 17, 3160–3171 (2005).

    Article  CAS  Google Scholar 

  44. Carraway, E., Demas, J. & DeGraff, B. Photophysics and oxygen quenching of transition-metal complexes on fumed silica. Langmuir 7, 2991–2998 (1991).

    Article  CAS  Google Scholar 

  45. Barrett, S. M., Wang, C. & Lin, W. Oxygen sensing via phosphorescence quenching of doped metal-organic frameworks. J. Mater. Chem. 22, 10329–10334 (2012).

    Article  CAS  Google Scholar 

  46. Liu, S. Y. et al. Flexible, luminescent metal-organic frameworks showing synergistic solid‐solution effects on porosity and sensitivity. Angew. Chem. Int. Ed. 55, 16021–16025 (2016).

    Article  CAS  Google Scholar 

  47. Ye, J.-W. et al. Mixed-lanthanide porous coordination polymers showing range-tunable ratiometric luminescence for O2 sensing. lnorg. Chem. 56, 4238–4243 (2017).

    Article  CAS  Google Scholar 

  48. Qi, X.-L. et al. Phosphorescence doping in a flexible ultramicroporous framework for high and tunable oxygen sensing efficiency. Chem. Commun. 49, 6864–6866 (2013).

    Article  CAS  Google Scholar 

  49. Xie, Z., Ma, L., deKrafft, K. E., Jin, A. & Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 132, 922–923 (2010).

    Article  CAS  Google Scholar 

  50. Cai, S. et al. Hydrogen‐bonded organic aromatic frameworks for ultralong phosphorescence by intralayer π-π interactions. Angew. Chem. Int. Ed. 57, 4005–4009 (2018).

    Article  CAS  Google Scholar 

  51. Hirata, S. et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386–3397 (2013).

    Article  CAS  Google Scholar 

  52. Lehner, P., Staudinger, C., Borisov, S. M. & Klimant, I. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nat. Commun. 5, 4460 (2014).

    Article  CAS  Google Scholar 

  53. Cai, S. et al. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nat. Commun. 10, 4247 (2019).

    Article  Google Scholar 

  54. Yu, Y. et al. Room‐temperature‐phosphorescence‐based dissolved oxygen detection by core‐shell polymer nanoparticles containing metal‐free organic phosphors. Angew. Chem. Int. Ed. 56, 16207–16211 (2017).

    Article  CAS  Google Scholar 

  55. Zhang, G. et al. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 129, 8942–8943 (2007).

    Article  CAS  Google Scholar 

  56. Feng, Y., Cheng, J., Zhou, L., Zhou, X. & Xiang, H. Ratiometric optical oxygen sensing: a review in respect of material design. Analyst 137, 4885–4901 (2012).

    Article  CAS  Google Scholar 

  57. Mamlouk, H. et al. Highly active, separable and recyclable bipyridine iridium catalysts for C-H borylation reactions. Catal. Sci. Technol. 8, 124–127 (2018).

    Article  CAS  Google Scholar 

  58. Akita, M., Saito, S., Osaka, I., Koganezawac, T. & Takimiya, T. Amide-bridged terphenyl and dithienylbenzene units for semiconducting polymers. RSC Adv. 6, 16437–16447 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a US Army Office of Scientific Research Single Investigator Grant (D.F.P.) and an NSERC of Canada Discovery Grant (D.F.P.). E.H. and C.R. acknowledge FRQNT doctoral scholarships. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank R. Stein (McGill University) for assistance with solid-state NMR spectroscopy, T. Maris (University de Montreal) for X-ray crystallography and A. Jonderian and E. McCalla (McGill University) for access to PXRD measurements. The computational part of this work was enabled, in part, by The Digital Research Alliance of Canada’s compute clusters (https://alliancecan.ca). We are grateful to the Materials Characterization facilities in the Department of Chemistry of McGill University (MC2) and the McGill Institute for Advanced Materials (MIAM) and the Facility of Electron Microscopy Research at McGill.

Author information

Authors and Affiliations

Authors

Contributions

E.H. and D.F.P. conceived the project and wrote the Paper. E.H. and Y.T. prepared and characterized the starting materials and COFs. E.H. and C.R. conducted the photoluminescence measurements. C.-H.L. performed the TEM and HAADF mapping. H.M.T. determined the BrPBA crystal structure and performed thermal analysis and Hirshfeld surface analysis. All authors contributed to data analyses and provided comments on the paper. Correspondence and requests for materials should be addressed to D.F.P.

Corresponding author

Correspondence to Dmytro F. Perepichka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Florian Auras and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Discussion and Tables 1–14.

Supplementary Data 1

Source data for Supplementary figures.

Supplementary Data 2

Crystallographic data for ClPBA; CCDC reference 2119959.

Supplementary Data 3

Crystallographic data for BrPBA; CCDC reference 2119960.

Source data

Source Data Fig. 2

Numerical data for panels a,b,c,e,f,h.

Source Data Fig. 3

Numerical data for panels a,b,d,e,f.

Source Data Fig. 4

Numerical data for all panels.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzehpoor, E., Ruchlin, C., Tao, Y. et al. Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nat. Chem. 15, 83–90 (2023). https://doi.org/10.1038/s41557-022-01070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01070-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing