Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Challenges to developing materials for the transport and storage of hydrogen

Abstract

Hydrogen has the highest gravimetric energy density of any energy carrier and produces water as the only oxidation product, making it extremely attractive for both transportation and stationary power applications. However, its low volumetric energy density causes considerable difficulties, inspiring intense efforts to develop chemical-based storage using metal hydrides, liquid organic hydrogen carriers and sorbents. The controlled uptake and release of hydrogen by these materials can be described as a series of challenges: optimal properties fall within a narrow range, can only be found in few materials and often involve important trade-offs. In addition, a greater understanding of the complex kinetics, mass transport and microstructural phenomena associated with hydrogen uptake and release is needed. The goal of this Perspective is to delineate potential use cases, define key challenges and show that solutions will involve a nexus of several subdisciplines of chemistry, including catalysis, data science, nanoscience, interfacial phenomena and dynamic or phase-change materials.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Comparison of the volumetric and gravimetric energy densities of hydrogen storage materials with US DOE technical targets.
Fig. 2: The ΔH° values of hydrogen storage materials span an enormous range.
Fig. 3: Nanoconfinement of metal hydrides produces a variety of effects that can cause ΔH° and ΔS° to be correlated.
Fig. 4: High open metal site density MOFs.

References

  1. Arbabzadeh, M., Sioshansi, R., Johnson, J. X. & Keoleian, G. A. The role of energy storage in deep decarbonization of electricity production. Nat. Commun. 10, 3413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. The Future of Hydrogen (IEA, 2019).

  3. Pivovar, B., Rustagi, N. & Satyapal, S. Hydrogen at scale (H2@Scale): key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27, 47–52 (2018).

    Article  CAS  Google Scholar 

  4. The National Hydrogen Strategy (Federal Ministry for Economic Affairs and Climate Action, 2020).

  5. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (US DOE, 2017).

  6. Ahluwalia, R. K. et al. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrog. Energy 35, 4171–4184 (2010).

    Article  CAS  Google Scholar 

  7. Allendorf, M. D. et al. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ. Sci. 11, 2784–2812 (2018).

    Article  CAS  Google Scholar 

  8. Pasini, J. M. et al. Metal hydride material requirements for automotive hydrogen storage systems. Int. J. Hydrog. Energy 38, 9755–9765 (2013).

    Article  CAS  Google Scholar 

  9. Bhatia, S. K. & Myers, A. L. Optimum conditions for adsorptive storage. Langmuir 22, 1688–1700 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Witman, M. et al. Extracting an empirical intermetallic hydride design principle from limited data via interpretable machine learning. J. Phys. Chem. Lett. 11, 40–47 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Grubel, K., Jeong, H., Yoon, C. W. & Autrey, T. Challenges and opportunities for using formate to store, transport, and use hydrogen. J. Energy Chem. 41, 216–224 (2020).

    Article  Google Scholar 

  12. Zou, Y.-Q., von Wolff, N., Anaby, A., Xie, Y. & Milstein, D. Ethylene glycol as an efficient and reversible liquid–organic hydrogen carrier. Nat. Catal. 2, 415–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, Q. L. & Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 8, 478–512 (2015).

    Article  CAS  Google Scholar 

  14. Preuster, P., Papp, C. & Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Mohtadi, R. & Orimo, S.-i The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2017).

    Article  Google Scholar 

  16. Schneemann, A. et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 118, 10775–10839 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, L.-N. et al. Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst. J. Am. Chem. Soc. 141, 17995–17999 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Sordakis, K. et al. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 118, 372–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Onishi, N., Laurenczy, G., Beller, M. & Himeda, Y. Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord. Chem. Rev. 373, 317–332 (2018).

    Article  CAS  Google Scholar 

  20. Jeon, K. J. et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10, 286–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. White, J. L. et al. The inside-outs of metal hydride dehydrogenation: imaging the phase evolution of the Li-N-H hydrogen storage system. Adv. Mater. Interfaces 7, 1901905 (2020).

    Article  CAS  Google Scholar 

  22. Tsivion, E., Long, J. R. & Head-Gordon, M. Hydrogen physisorption on metal–organic framework linkers and metalated linkers: a computational study of the factors that control binding strength. J. Am. Chem. Soc. 136, 17827–17835 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Runcevski, T. et al. Adsorption of two gas molecules at a single metal site in a metal–organic framework. Chem. Commun. 52, 8251–8254 (2016).

    Article  CAS  Google Scholar 

  24. Kapelewski, M. T. et al. Record high hydrogen storage capacity in the metal organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem. Mater. 30, 8179–8189 (2018).

    Article  CAS  Google Scholar 

  25. Jawahery, S. et al. Adsorbate-induced lattice deformation in IRMOF-74 series. Nat. Commun. 8, 13945 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Witman, M. et al. The influence of intrinsic framework flexibility on adsorption in nanoporous materials. J. Am. Chem. Soc. 139, 5547–5557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanoo, P. et al. Pseudo-gated adsorption with negligible volume change evoked by halogen-bond interaction in the nanospace of MOFs. Chem. Eur. J. 26, 2148–2153 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Moosavi, S. M. et al. Capturing chemical intuition in synthesis of metal–organic frameworks. Nat. Commun. 10, 539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aaldto-Saksa, P. T., Cook, C., Kiviaho, J. & Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy—review and discussion. J. Power Sources 396, 803–823 (2018).

    Article  Google Scholar 

  30. Gianotti, E., Taillades-Jacquin, M., Roziere, J. & Jones, D. J. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catal. 8, 4660–4680 (2018).

    Article  CAS  Google Scholar 

  31. Modisha, P. M., Ouma, C. N. M., Garidzirai, R., Wasserscheid, P. & Bessarabov, D. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels 33, 2778–2796 (2019).

    Article  CAS  Google Scholar 

  32. Niermann, M., Beckendorff, A., Kaltschmitt, M. & Bonhoff, K. Liquid organic hydrogen carrier (LOHC)—assessment based on chemical and economic properties. Int. J. Hydrog. Energy 44, 6631–6654 (2019).

    Article  CAS  Google Scholar 

  33. Clot, E., Eisenstein, O. & Crabtree, R. H.Computational structure-activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem. Commun. 2007, 2231–2233 (2007).

    Article  Google Scholar 

  34. Cheng, H., Wu, J., Dong, Y. & Yang, M. Liquid hydrogen storage system. US patent 20180065849A1 (2015).

  35. Verevkin, S. P., Konnova, M. E., Zherikova, K. V. & Pimerzin, A. A. Sustainable hydrogen storage: thermochemistry of amino-alcohols as seminal liquid organic hydrogen carriers. J. Chem. Thermo. 163, 106591 (2021).

    Article  CAS  Google Scholar 

  36. Tran, B. L., Johnson, S. I., Brooks, K. P. & Autrey, S. T. Ethanol as a liquid organic hydrogen carrier for seasonal microgrid application: catalysis, theory, and engineering feasibility. ACS Sustain. Chem. Eng. 9, 7130–7138 (2021).

    Article  CAS  Google Scholar 

  37. Onoda, M., Nagano, Y. & Fujita, K. Iridium-catalyzed dehydrogenative lactonization of 1,4-butanediol and reversal hydrogenation: new hydrogen storage system using cheap organic resources. Int. J. Hydrog. Energy 44, 28514–28520 (2019).

    Article  CAS  Google Scholar 

  38. Hu, P., Fogler, E., Diskin-Posner, Y., Iron, M. A. & Milstein, D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat. Commun. 6, 6859 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Grubel, K. et al. Research requirements to move the bar forward using aqueous formate salts as H2 carriers for energy storage applications. J. Energy Power Technol. 2, 16 (2020).

  40. Su, J., Lu, M. & Lin, H. F. High yield production of formate by hydrogenating CO2 derived ammonium carbamate/carbonate at room temperature. Green Chem. 17, 2769–2773 (2015).

    Article  CAS  Google Scholar 

  41. Weisz, P. B. Diffusion and chemical transformation. Science 179, 433–440 (1973).

    Article  CAS  PubMed  Google Scholar 

  42. Weisz, P. B.The science of the possible. ChemTech 12, 424–425 (1982).

    Google Scholar 

  43. Peters, W. et al. Macrokinetic effects in perhydro-N-ethylcarbazole dehydrogenation and H2 productivity optimization by using egg-shell catalysts. Energy Environ. Sci. 8, 3013–3021 (2015).

    Article  CAS  Google Scholar 

  44. Alhumaidan, F., Cresswell, D. & Garforth, A. Hydrogen storage in liquid organic hydride: producing hydrogen catalytically from methylcyclohexane. Energy Fuels 25, 4217–4234 (2011).

    Article  CAS  Google Scholar 

  45. Andersson, J. Application of liquid hydrogen carriers in hydrogen steelmaking. Energies 14, 1392 (2021).

    Article  CAS  Google Scholar 

  46. Yolcular, S. & Olgun, O. Ni/Al2O3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production. Catal. Today 138, 198–202 (2008).

    Article  CAS  Google Scholar 

  47. Al-ShaikhAli, A. H., Jedidi, A., Cavallo, L. & Takanabe, K. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system. Chem. Commun. 51, 12931–12934 (2015).

    Article  CAS  Google Scholar 

  48. Yamaguchi, R., Ikeda, C., Takahashi, Y. & Fujita, K. Homogeneous catalytic system for reversible dehydrogenation–hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. J. Am. Chem. Soc. 131, 8410–8412 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, P., Ben-David, Y. & Milstein, D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew. Chem. Int. Ed. 55, 1061–1064 (2016).

    Article  CAS  Google Scholar 

  50. Snider, J. L. et al. Stabilized open metal sites in bimetallic metal–organic framework catalysts for hydrogen production from alcohols. J. Mater. Chem. A 9, 10869–10881 (2021).

    Article  CAS  Google Scholar 

  51. Stavila, V. et al. IRMOF-74(n)–Mg: a novel catalyst series for hydrogen activation and hydrogenolysis of C–O bonds. Chem. Sci. 10, 9880–9892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gu, T. T., Gu, J., Zhang, Y. & Ren, H. Metal borohydride-based system for solid-state hydrogen storage. Prog. Chem. 32, 665–686 (2020).

    CAS  Google Scholar 

  53. Li, B., Li, J. D., Zhao, H. J., Yu, X. Q. & Shao, H. Y. Mg-based metastable nano alloys for hydrogen storage. Int. J. Hydrog. Energy 44, 6007–6018 (2019).

    Article  CAS  Google Scholar 

  54. Sun, Y. H. et al. Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art. Energy Storage Mater. 10, 168–198 (2018).

    Article  Google Scholar 

  55. Li, J. D., Li, B., Shao, H. Y., Li, W. & Lin, H. J. Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts 8, 89 (2018).

    Article  Google Scholar 

  56. Yu, X. B., Tang, Z. W., Sun, D. L., Ouyang, L. Z. & Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater Sci. 88, 1–48 (2017).

    Article  Google Scholar 

  57. Rusman, N. A. A. & Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrog. Energy 41, 12108–12126 (2016).

    Article  CAS  Google Scholar 

  58. Niaz, S., Manzoor, T. & Pandith, A. H. Hydrogen storage: materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457–469 (2015).

    Article  CAS  Google Scholar 

  59. Møller, K. T. et al. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage. Energies 10, 1645 (2017).

    Article  Google Scholar 

  60. Paskevicius, M. et al. Metal borohydrides and derivatives—synthesis, structure and properties. Chem. Soc. Rev. 46, 1565–1634 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Xiong, Z. T., Wu, G. T., Hu, H. J. & Chen, P. Ternary imides for hydrogen storage. Adv. Mater. 16, 1522–1525 (2004).

    Article  CAS  Google Scholar 

  62. Luo, W. F.(LiNH2-MgH2): a viable hydrogen storage system. J. Alloys Compd. 381, 284–287 (2004).

    Article  CAS  Google Scholar 

  63. Lu, J., Fang, Z. Z. G., Choi, Y. J. & Sohn, H. Y. Potential of binary lithium magnesium nitride for hydrogen storage applications. J. Phys. Chem. C 111, 12129–12134 (2007).

    Article  CAS  Google Scholar 

  64. Wang, J. et al. Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. Angew. Chem. Int. Ed. 48, 5828–5832 (2009).

    Article  CAS  Google Scholar 

  65. He, T., Cao, H. J. & Chen, P. Complex hydrides for energy storage, conversion, and utilization. Adv. Mater. 31, 1902757 (2019).

    Article  CAS  Google Scholar 

  66. Liu, X., Wu, C., Wu, F. & Bai, Y. Light metal complex hydride hydrogen storage systems. Prog. Chem. 27, 1167–1181 (2015).

    CAS  Google Scholar 

  67. Orimo, S. I., Nakamori, Y., Eliseo, J. R., Zuttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Ouyang, L., Chen, K., Jiang, J., Yang, X.-S. & Zhu, M. Hydrogen storage in light-metal based systems: a review. J. Alloys Compd. 829, 154597 (2020).

    Article  CAS  Google Scholar 

  69. Berube, V., Radtke, G., Dresselhaus, M. & Chen, G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int. J. Energy Res. 31, 637–663 (2007).

    Article  CAS  Google Scholar 

  70. Pal, P., Jain, A., Miyaoka, H., Kojima, Y. & Ichikawa, T. Eutectic melting in x(2LiBH4-MgH2) hydrogen storage system by the addition of KH. Int. J. Hydrog. Energy 45, 17000–17005 (2020).

    Article  CAS  Google Scholar 

  71. Cho, E. S. et al. Hierarchically controlled inside-out doping of Mg nanocomposites for moderate temperature hydrogen storage. Adv. Funct. Mater. 27, 1704316 (2017).

    Article  Google Scholar 

  72. Witman, M. et al. Data-driven discovery and synthesis of high entropy alloy hydrides with targeted thermodynamic stability. Chem. Mater. 33, 4067–4076 (2021).

    Article  CAS  Google Scholar 

  73. Pinkerton, F. E., Meyer, M. S., Meisner, G. P., Balogh, M. P. & Vajo, J. J. Phase boundaries and reversibility of LiBH4/MgH2 hydrogen storage material. J. Phys. Chem. C 111, 12881–12885 (2007).

    Article  CAS  Google Scholar 

  74. Lohstroh, W., Roth, A., Hahn, H. & Fichtner, M. Thermodynamic effects in nanoscale NaAlH4. ChemPhysChem 11, 789–792 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Paskevicius, M., Sheppard, D. A. & Buckley, C. E. Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J. Am. Chem. Soc. 132, 5077–5083 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. White, J. L. et al. Identifying the role of dynamic surface hydroxides in the dehydrogenation of Ti-doped NaAlH4. ACS Appl. Mater. Interfaces 11, 4930–4941 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Frankcombe, T. J. Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem. Rev. 112, 2164–2178 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Wood, B. C., Heo, T. W., Kang, S., Wan, L. F. & Li, S. Beyond idealized models of nanoscale metal hydrides for hydrogen storage. Ind. Eng. Chem. Res. 59, 5786–5796 (2020).

    Article  CAS  Google Scholar 

  79. Griessen, R., Strohfeldt, N. & Giessen, H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater. 15, 311–317 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, W. & Aguey-Zinsou, K.-F. Synthesis of highly dispersed nanosized LaNi5 on carbon: revisiting particle size effects on hydrogen storage properties. Int. J. Hydrog. Energy 41, 14429–14436 (2016).

    Article  CAS  Google Scholar 

  81. Zhao-Karger, Z. et al. Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem. Commun. 46, 8353–8355 (2010).

    Article  CAS  Google Scholar 

  82. Cho, Y. et al. Reversing the irreversible: thermodynamic stabilization of LiAlH4 nanoconfined within a nitrogen-doped carbon host. ACS Nano 15, 10163–10174 (2021).

    Article  PubMed  Google Scholar 

  83. Stavila, V. et al. Defying thermodynamics: stabilization of alane within covalent triazine frameworks for reversible hydrogen storage. Angew. Chem. Int. Ed. 60, 25815–25824 (2021).

    Article  CAS  Google Scholar 

  84. Rosi, N. L. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1129 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Murray, L. J., Dinca, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Anastasopoulou, A. et al. Technoeconomic analysis of metal–organic frameworks for bulk hydrogen transportation. Energy Environ. Sci. 14, 1083–1094 (2021).

    Article  CAS  Google Scholar 

  87. Yang, C. & Ogden, J. Determining the lowest-cost hydrogen delivery mode. Int. J. Hydrog. Energy 32, 268–286 (2007).

    Article  Google Scholar 

  88. Witman, M. et al. Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change. Mol. Syst. Des. Eng. 5, 1491–1503 (2020).

    Article  CAS  Google Scholar 

  89. Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kapelewski, M. T. et al. M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) metal–organic frameworks exhibiting increased charge density and enhanced H2 binding at the open metal sites. J. Am. Chem. Soc. 2, 12119–12129 (2014).

    Article  Google Scholar 

  91. Witman, M. et al. Rational design of a low-cost, high-performance metal–organic framework for hydrogen storage and carbon capture. J. Phys. Chem. C 121, 1171–1181 (2017).

    Article  CAS  Google Scholar 

  92. Denysenko, D., Grzywa, M., Jelic, J., Reuter, K. & Volkmer, D. Scorpionate-type coordination in MFU-4l metal–organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sites. Angew. Chem. Int. Ed. 53, 5832–5836 (2014).

    Article  CAS  Google Scholar 

  93. Jaramillo, D. E. et al. Ambient-temperature hydrogen storage via vanadium(ii)–dihydrogen complexation in a metal–organic framework. J. Am. Chem. Soc. 143, 6248–6256 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Jaramillo, D. E. et al. Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites. Nat. Mater. 19, 517–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Simon, C. M. et al. Optimizing nanoporous materials for gas storage. Phys. Chem. Chem. Phys. 16, 5499 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Kitagawa, S., Kitaura, R. & Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  97. Choi, H. J., Dincă, M. & Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal−organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848–7850 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Paragian, K., Li, B., Massino, M. & Rangarajan, S. A computational workflow to discover novel liquid organic hydrogen carriers and their dehydrogenation routes. Mol. Syst. Des. Eng. 5, 1658–1670 (2020).

    Article  CAS  Google Scholar 

  99. Hutcheon, M. J., Shipley, A. M. & Needs, R. J. Predicting novel superconducting hydrides using machine learning approaches. Phys. Rev. B 101, 144505 (2020).

    Article  CAS  Google Scholar 

  100. Banerjee, D. et al. Metal–organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 7, ncomms11831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goldsmith, J., Wong-Foy, A. G., Cafarella, M. J. & Siegel, D. J. Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem. Mater. 25, 3373–3382 (2013).

    Article  CAS  Google Scholar 

  102. Gomez-Gualdron, D. A., Wilmer, C. E., Farha, O. K., Hupp, J. T. & Snurr, R. Q. Exploring the limits of methane storage and delivery in nanoporous materials. J. Phys. Chem. C 118, 6941–6951 (2014).

    Article  CAS  Google Scholar 

  103. Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015).

    Article  CAS  Google Scholar 

  104. Simon, C. M., Mercado, R., Schnell, S. K., Smit, B. & Haranczyk, M. What are the best materials to separate a xenon/krypton mixture? Chem. Mater. 27, 4459–4475 (2015).

    Article  CAS  Google Scholar 

  105. Ahmed, A. et al. Exceptional hydrogen storage achieved by screening nearly half a million metal–organic frameworks. Nat. Commun. 10, 1568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bobbitt, N. S., Chen, J. & Snurr, R. Q. High-throughput screening of metal–organic frameworks for hydrogen storage at cryogenic temperature. J. Phys. Chem. C 120, 27328–27341 (2016).

    Article  CAS  Google Scholar 

  107. Thornton, A. W. et al. Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem. Mater. 29, 2844–2854 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  109. Dzubak, A. L. et al. Ab initio carbon capture in open-site metal–organic frameworks. Nat. Chem. 4, 810–816 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Lee, K., Howe, J. D., Lin, L.-C., Smit, B. & Neaton, J. B. Small-molecule adsorption in open-site metal–organic frameworks: a systematic density functional theory study for rational design. Chem. Mater. 27, 668–678 (2015).

    Article  CAS  Google Scholar 

  111. Lin, L.-C., Lee, K., Gagliardi, L., Neaton, J. B. & Smit, B. Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal–organic frameworks. J. Chem. Theory Comput. 10, 1477–1488 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Pham, T. et al. Understanding the H2 sorption trends in the M-MOF-74 series (M = Mg, Ni, Co, Zn). J. Phys. Chem. C 119, 1078–1090 (2015).

    Article  CAS  Google Scholar 

  113. Pham, T., Forrest, K. A., McLaughlin, K., Eckert, J. & Space, B. Capturing the H2–metal interaction in Mg-MOF-74 using classical polarization. J. Phys. Chem. C 118, 22683–22690 (2014).

    Article  CAS  Google Scholar 

  114. Pham, T. et al. Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations. J. Mater. Chem. A 2, 2088–2100 (2014).

    Article  CAS  Google Scholar 

  115. Chung, Y. G. et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019).

    Article  CAS  Google Scholar 

  116. Alapati, S. V., Johnson, J. K. & Sholl, D. S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J. Phys. Chem. B 110, 8769–8776 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  118. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    Article  CAS  Google Scholar 

  119. Nazarian, D., Ganesh, P. & Sholl, D. S. Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal–organic frameworks. J. Mater. Chem. A 3, 22432–22440 (2015).

    Article  CAS  Google Scholar 

  120. Hattrick-Simpers, J. R., Choudhary, K. & Corgnale, C. A simple constrained machine learning model for predicting high-pressure-hydrogen-compressor materials. Mol. Syst. Des. Eng. 3, 509–517 (2018).

    Article  CAS  Google Scholar 

  121. Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  PubMed  Google Scholar 

  122. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  PubMed  Google Scholar 

  123. Jinnouchi, R., Lahnsteiner, J., Karsai, F., Kresse, G. & Bokdam, M. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference. Phys. Rev. Lett. 122, 225701 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Allendorf, M. D., Stavila, V., Witman, M., Brozek, C. K. & Hendon, C. H. What lies beneath a metal–organic framework crystal structure? New design principles from unexpected behaviors. J. Am. Chem. Soc. 143, 6705–6723 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Technology Roadmap—Hydrogen and Fuel Cells (IEA, 2015).

  127. Cao, W., Zhang, J. & Li, H. Batteries with high theoretical energy densities. Energy Storage Mater. 26, 46–55 (2020).

    Article  Google Scholar 

  128. May, G. J., Davidson, A. & Monahov, B. Lead batteries for utility energy storage: a review. J. Energy Storage 15, 145–157 (2018).

    Article  Google Scholar 

  129. Pasquini, L. Design of nanomaterials for hydrogen storage. Energies 13, 3503 (2020).

    Article  CAS  Google Scholar 

  130. Klebanoff, L. E. Hydrogen Storage Technology: Materials and Applications (CRC Press, 2013).

  131. Chen, P., Xiong, Z., Luo, J., Lin, J. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Ding, Z. et al. LiBH4 for hydrogen storage—new perspectives. Nano Mater. Sci. 2, 109–119 (2020).

    Article  Google Scholar 

  133. Liu, M. et al. Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019).

    Article  CAS  Google Scholar 

  134. Von Colbe, J. B. et al. Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives. Int. J. Hydrog. Energy 44, 7780–7808 (2019).

    Article  Google Scholar 

  135. Zavorotynska, O., El-Kharbachi, A., Deledda, S. & Hauback, B. C. Recent progress in magnesium borohydride Mg(BH4)2: fundamentals and applications for energy storage. Int. J. Hydrog. Energy 41, 14387–14403 (2016).

    Article  CAS  Google Scholar 

  136. Zidan, R. et al. Aluminium hydride: a reversible material for hydrogen storage. Chem. Commun. 2009, 3717–3719 (2009).

    Article  Google Scholar 

  137. Hydrogen and Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Section 3.3 (Hydrogen and Fuel Cell Technologies Office, 2015).

  138. Brooks, K. P., Semelsberger, T. A., Simmons, K. L. & van Hassel, B. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications. J. Power Sources 268, 950–959 (2014).

    Article  CAS  Google Scholar 

  139. Tamburello, D., Hardy, B., Corgnale, C., Sulic, M. & Anton, D. Cryo-adsorbent hydrogen storage systems for fuel cell vehicles. In Proc. ASME 2017 Fluids Engineering Division Summer Meeting (American Society of Mechanical Engineers, 2017).

  140. Bartscher, W., Rebizant, J. & Haschke, J. M. Equilibria and thermodynamic properties of the ThZr2·H system. J. Less Common Met. 136, 385–394 (1988).

    Article  CAS  Google Scholar 

  141. Vajo, J. J., Mertens, F., Ahn, C. C., Bowman, R. C. & Fultz, B. Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J. Phys. Chem. B 108, 13977–13983 (2004).

    Article  CAS  Google Scholar 

  142. Cahen, S., Eymery, J.-B., Janot, R. & Tarascon, J.-M. Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. J. Power Sources 189, 902–908 (2009).

    Article  CAS  Google Scholar 

  143. Aakko-Saksa, P. T., Cook, C., Kiviaho, J. & Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy—review and discussion. J. Power Sources 396, 803–823 (2018).

    Article  CAS  Google Scholar 

  144. Sahlberg, M., Karlsson, D., Zlotea, C. & Jansson, U. Superior hydrogen storage in high entropy alloys. Sci. Rep. 6, 36770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Reilly, J. J. & Wiswall, R. H. Formation and properties of iron titanium hydride. Inorg. Chem. 13, 218–222 (1974).

    Article  CAS  Google Scholar 

  146. Marcinkoski, J. et al. Hydrogen Class 8 Long Haul Truck Targets. Report No. 19006 (Hydrogen and Fuel Cell Technologies Office, US DOE, 2019).

  147. Brewer, E & Hanlin, J. Fuel Cell Hybrid Electric Delivery Van Project. In 2021 Annual Merit Review and Peer Evaluation Meeting (Center for Transportation and the Environment, 2021); https://www.hydrogen.energy.gov/pdfs/review21/ta016_hanlin_2021_o.pdf

  148. Pratt, J. W. & Klebanoff, L. E. Feasibility of the SF-BREEZE: a Zero-Emission, Hydrogen Fuel Cell, High-Speed Passenger Ferry. Report No. SAND2016-9719 (Sandia National Laboratories, 2016).

  149. FY 2018 Progress Report for the DOE Hydrogen and Fuel Cells Program. Report No. DOE/GO-102019-5156 (US DOE, 2019).

  150. Devlin, P. & Moreland, G. Industry Deployed Fuel Cell Backup Power (BuP). Report No. 17004 (Hydrogen and Fuel Cell Technologies Office, US DOE, 2017).

  151. Pauksztat, A., Saliger, R. & Boyanov, N. Residential energy supply concept with integration of renewable energies and energy storage. Chem. Eng. Technol. 42, 1907–1913 (2019).

    Article  CAS  Google Scholar 

  152. Kumagai, T. AHEAD Launches BruneiJapan Hydrogen Supply Chain for Power Generation in Tokyo Bay (S&P Global, 2020).

  153. Energy Savings Analysis: ANSI/ASHRAE/IES Standard 90.1-2016 (Office of Energy Efficiency & Renewable Energy & US DOE, 2017).

  154. Saur, G., Arjona, V., Clutterbuck, A. & Parker, E. Hydrogen and Fuel Cells for Data Center Applications Project Meeting: Workshop Report (National Renewable Energy Laboratory, 2019).

  155. Mongird, K. et al. 2020 Grid Energy Storage Technology Cost and Performance Assessment. Report No. DOE/PA-0204 (US DOE, 2020).

Download references

Acknowledgements

We gratefully acknowledge research support from the Hydrogen Materials Advanced Research Consortium (HyMARC), which was established as part of the Energy Materials Network under the US DOE Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Cell Technologies Office, under contract numbers DE-AC04-94AL85000 and DE-AC52-07NA27344. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia—a wholly owned subsidiary of Honeywell International—for the US DOE’s National Nuclear Security Administration under contract DE-NA-0003525. The Pacific Northwest National Laboratory is operated by Battelle for the US DOE under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

M.D.A., V.S., M.W., J.L.S., T.A., M.E.B., K.B. and B.L.T. contributed to discussions and wrote the manuscript.

Corresponding authors

Correspondence to Mark D. Allendorf or Mark E. Bowden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Linear regression of entropy and enthalpy of dehydrogenation for bulk and nanoscale hydrides.

Figure 1 shows linear least-squares fits to the thermodynamic data for (a) bulk and (b) nanoscale hydrides. The bulk data, which are a subset of the full HydPARK database10, at best show a weak correlation between the entropy ΔS° and enthalpy ΔH° of H2 dehydrogenation, as indicated by the low values of R2 and the Spearman Rank Correlation Coefficient R. Excluding outlier compositions, as detailed in Ref. 10, improves the fit somewhat, yielding R2 = 0.42 and R=0.68 across the entire ML-ready HydPARK dataset, suggesting a moderate correlation. In contrast, the data for nanoscale hydrides, although admittedly limited, exhibit a fairly strong correlation, with R2 = 0.738 and R = 0.891. Within specific hydride classes, stronger ΔH° and ΔS° correlations can be found. For example, for nano-PdH R2 = 0.954 and R = 0.939 and for bulk AB materials R2 = 0.924 and R = 0.964.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1 and 2, Supplementary Discussion and Supplementary References.

Supplementary Data 1

Source data for Supplementary Fig. 1 (thermodynamics data for hydrogen release from nanoscale metal hydrides).

Source data

Source Data Fig. 1

Energy and specific energy for various hydrogen storage materials.

Source Data Fig. 3

Enthalpy and entropy of H2 release from bulk and nanoscale metal hydrides.

Source Data Extended Data Fig. 1

Thermodynamics data for hydrogen release from bulk metal hydrides.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allendorf, M.D., Stavila, V., Snider, J.L. et al. Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 14, 1214–1223 (2022). https://doi.org/10.1038/s41557-022-01056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01056-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing