Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed selective oxidative amination of olefins with Lewis basic amines

Abstract

Amines are prominent in natural products, pharmaceutical agents and agrochemicals. Moreover, they are synthetically valuable building blocks for the construction of complex organic molecules and functional materials. However, amines, especially aliphatic and aromatic amines with free N–H bonds, tend to coordinate with transition metals and deactivate the catalyst, posing a tremendous challenge to applying Lewis basic amines in the amination of olefins. Here we present an example of oxidative amination of simple olefins with various Lewis basic amines. The combination of a palladium catalyst, 2,6-dimethyl-1,4-benzoquinone and a phosphorous ligand leads to the efficient synthesis of alkyl and aryl allylamines. A series of allylamines were obtained with good yields and excellent regio- and stereoselectivities. Intramolecular amination to synthesize tetrahydropyrrole and piperidine derivatives was also realized. Mechanistic investigations reveal that the reaction undergoes allylic C(sp3)–H activation and subsequent functionalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic oxidative amination of olefins for the synthesis of alkyl and aryl allylamines.
Fig. 2: Streamlining the synthesis of chemical drugs via palladium-catalysed oxidative amination.
Fig. 3: Mechanistic investigation of palladium-catalysed oxidative amination through control experiments.
Fig. 4: DFT study on the coordination competition between substrates and ligand and the operative catalytic cycle.

Similar content being viewed by others

Data availability

Crystallographic data for the structure reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2038362 (62). A copy of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data are available in the main text or Supplementary Information.

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Mayol-Llinàs, J., Nelson, A., Farnaby, W. & Ayscough, A. Assessing molecular scaffolds for CNS drug discovery. Drug Discov. Today. 22, 965–969 (2017).

    Article  PubMed  Google Scholar 

  3. Stütz, A. & Petranyi, G. Synthesis and antifungal activity of (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine (SF 86-327) and related allylamine derivatives with enhanced oral activity. J. Med. Chem. 27, 1539–1543 (1984).

    Article  PubMed  Google Scholar 

  4. Stütz, A., Georgopoulos, A., Granitzer, W., Petranyi, G. & Berney, D. Synthesis and structure–activity relationships of naftifine-related allylamine antimycotics. J. Med. Chem. 29, 112–125 (1986).

    Article  PubMed  Google Scholar 

  5. Johannsen, M. & Jørgensen, K. A. Allylic amination. Chem. Rev. 98, 1689–1708 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Sweeney, J. B., Ball, A. K., Lawrence, P. A., Sinclair, M. C. & Smith, L. J. A simple, broad-scope nickel(0) precatalyst system for the direct amination of allyl alcohols. Angew. Chem. Int. Ed. 57, 10202–10206 (2018).

    Article  CAS  Google Scholar 

  7. Cheng, Q., Chen, J.-T., Lin, S.-Y. & Ritter, T. Allylic amination of alkenes with iminothianthrenes to afford alkyl allylamines. J. Am. Chem. Soc. 142, 17287–17293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie, Y.-J., Hu, J.-H., Wang, Y.-Y., Xia, C.-G. & Huang, H.-M. Palladium-catalyzed vinylation of aminals with simple alkenes: a new strategy to construct allylamines. J. Am. Chem. Soc. 134, 20613–20616 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, P.-S., Shen, M.-L., Wang, T.-C., Lin, H.-C. & Gong, L.-Z. Access to chiral hydropyrimidines through palladium-catalyzed asymmetric allylic C–H amination. Angew. Chem. Int. Ed. 56, 16032–16036 (2017).

    Article  CAS  Google Scholar 

  10. Vemula, S. R., Kumar, D. & Cook, G. R. Palladium-catalyzed allylic amidation with N-heterocycles via sp3 C–H oxidation. ACS Catal. 6, 5295–5301 (2016).

    Article  CAS  Google Scholar 

  11. Reed, S. A. & White, M. C. Catalytic intermolecular linear allylic C–H amination via heterobimetallic catalysis. J. Am. Chem. Soc. 130, 3316–3318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Timokhin, V. I., Anastasi, N. R. & Stahl, S. S. Dioxygen-coupled oxidative amination of styrene. J. Am. Chem. Soc. 125, 12996–12997 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. McDonald, R. I., Liu, G.-S. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimizu, Y., Obora, Y. & Ishii, Y. Intermolecular aerobic oxidative allylic amination of simple alkenes with diarylamines catalyzed by the Pd(OCOCF3)2/NPMoV/O2 system. Org. Lett. 12, 1372–1374 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Willcox, D. B. et al. A general catalytic β-C–H carbonylation of aliphatic amines to β-lactams. Science 354, 851–857 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Åkermark, B. et al. Palladium-promoted addition of amines to isolated double bonds. J. Organomet. Chem. 72, 127–133 (1974).

    Article  Google Scholar 

  17. Brice, J. L., Harang, J. E., Timokhin, V. I., Anastasi, N. R. & Stahl, S. S. Aerobic oxidative amination of unactivated alkenes catalyzed by palladium. J. Am. Chem. Soc. 127, 2868–2869 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yin, G.-Y., Wu, Y.-C. & Liu, G.-S. Scope and mechanism of allylic C–H amination of terminal alkenes by the palladium/PhI(OPiv)2 catalyst system: insights into the effect of naphthoquinone. J. Am. Chem. Soc. 132, 11978–11987 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Kohler, D. G., Gockel, S. N., Kennemur, J. L., Waller, P. J. & Hull, K. L. Palladium-catalysed anti-Markovnikov selective oxidative amination. Nat. Chem. 10, 333–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma, R. & White, M. C. C–H to C–N cross-coupling of sulfonamides with olefins. J. Am. Chem. Soc. 140, 3202–3205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Calleja, J. et al. A steric tethering approach enables palladium-catalyzed C–H activation of primary amino alcohols. Nat. Chem. 7, 1009–1016 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Ji, X.-C., Huang, H.-W., Wu, W.-Q. & Jiang, H.-F. Palladium-catalyzed intermolecular dehydrogenative aminohalogenation of alkenes under molecular oxygen: an approach to brominated enamines. J. Am. Chem. Soc. 135, 5286–5289 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Ouyang, L. et al. Access to α-amino acid esters through palladium-catalyzed oxidative amination of vinyl ethers with hydrogen peroxide as the oxidant and oxygen source. Angew. Chem. Int. Ed. 56, 15926–15930 (2017).

    Article  CAS  Google Scholar 

  25. Ali, S. Z. et al. Allylic C–H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis. Science 376, 276–283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trost, B. M., Weber, L., Strege, P. E., Fullerton, T. J. & Dietsche, T. J. Allylic alkylation: nucleophilic attack on π-allylpalladium complexes. J. Am. Chem. Soc. 100, 3416–3426 (1978).

    Article  CAS  Google Scholar 

  27. Pattillo, C. C. et al. Aerobic linear allylic C–H amination: overcoming benzoquinone inhibition. J. Am. Chem. Soc. 138, 1265–1272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qi, X.-X., Chen, P.-H. & Liu, G.-S. Catalytic oxidative trifluoromethoxylation of allylic C–H bonds using a palladium catalyst. Angew. Chem. Int. Ed. 56, 9517–9521 (2017).

    Article  CAS  Google Scholar 

  29. Petranyi, G., Ryder, N. S. & Stutz, A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224, 1239–1241 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Ye, Z.-S., Brust, T. F., Watts, V. J. & Dai, M.-J. Palladium-catalyzed regio- and stereoselective γ-arylation of tertiary allylic amines: identification of potent adenylyl cyclase inhibitors. Org. Lett. 17, 892–895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kitahata, N. et al. A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg. Med. Chem. 14, 5555–5561 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Hanley, P. S. & Hartwig, J. F. Intermolecular migratory insertion of unactivated olefins into palladium–nitrogen bonds. Steric and electronic effects on the rate of migratory insertion. J. Am. Chem. Soc. 133, 15661–15673 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science and Technology of the People’s Republic of China (2016YFA0602900), the National Natural Science Foundation of China (21420102003) and the Key-Area Research and Development Program of Guangdong Province (2020B010188001) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived of and supervised by H.J. Y. Jin developed the palladium-catalysed selective oxidative amination of olefins with Lewis basic amines. C.L. contributed to expanding the scope for aromatic amines. M.L. and Y. Jin performed the reaction mechanism studies. Y. Jing and Z.K. performed DFT studies. W.W. wrote the manuscript and incorporated revisions suggested by all authors.

Corresponding author

Correspondence to Huanfeng Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Tables 1–10, experimental procedures, synthetic procedures, characterization data, DFT calculations and references.

Supplementary Data 1

Crystallographic data for compound 62; CCDC reference 2038362.

Supplementary Data 2

Crystallographic data for compound 62; CCDC reference 2038362.

Supplementary Data 3

Cartesian coordinates (x,y,z) for all optimized structures.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Jing, Y., Li, C. et al. Palladium-catalysed selective oxidative amination of olefins with Lewis basic amines. Nat. Chem. 14, 1118–1125 (2022). https://doi.org/10.1038/s41557-022-01023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01023-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing