Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed construction of butafulvenes

Abstract

Butafulvene is a constitutional isomer of benzene, comprising a cyclobutene skeleton bearing two exocyclic conjugated methylene units. As a result of the intrinsic high strain energy and anti-aromaticity, the preparation of butafulvene compounds has been a fundamental issue for the development of butafulvene chemistry. Here an efficient palladium-catalysed coupling protocol involving propargylic compounds has been developed, providing a solid and versatile strategy for the rapid assembly of symmetric butafulvene derivatives. Based on mechanistic studies, two complementary mechanisms, both involving palladium catalysis, have been confirmed. With the mechanism unveiled, the synthesis of non-symmetric butafulvenes has also been achieved. Advantages of this strategy include tolerance to a wide range of propargylic molecules, mild reaction conditions, simple catalytic systems and easy scalability. The synthetic potential of the products as platform molecules for cyclobutene derivatives has also been demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Triple-conjugated carbocycles and approaches to strained butafulvenes.
Fig. 2: Mechanistic studies on reaction intermediates and proposed mechanism for the two developed strategies.
Fig. 3: Scope of non-symmetric butafulvenes via three different strategies.
Fig. 4: Synthetic transformations of butafulvenes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC1875931 (2a), 2035320 (5h), 2045841 (18a), 2049400 (19a) and 2131557 (22). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Wang, M. & Shi, Z. Methodologies and strategies for selective borylation of C–Het and C–C bonds. Chem. Rev. 120, 7348–7398 (2020).

    Article  PubMed  CAS  Google Scholar 

  2. Qiu, Z. & Li, C.-J. Transformations of less-activated phenols and phenol derivatives via C–O cleavage. Chem. Rev. 120, 10454–10515 (2020).

    Article  PubMed  CAS  Google Scholar 

  3. Evano, G. & Theunissen, C. Beyond Friedel and Crafts: directed alkylation of C–H bonds in arenes. Angew. Chem. Int. Ed. 58, 7202–7236 (2019).

    Article  CAS  Google Scholar 

  4. Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    Article  PubMed  CAS  Google Scholar 

  6. You, S.-L. Asymmetric Dearomatization Reactions (Wiley, 2016).

    Book  Google Scholar 

  7. Raviola, C., Protti, S., Ravelli, D. & Fagnoni, M. (Hetero)aromatics from dienynes, enediynes and enyne-allenes. Chem. Soc. Rev. 45, 4364–4390 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Mortier, J. Arene Chemistry (Wiley, 2015).

    Book  Google Scholar 

  9. Li, L., Mu, X., Liu, W., Mi, Z. & Li, C.-J. Simple and efficient system for combined solar energy harvesting and reversible hydrogen storage. J. Am. Chem. Soc. 137, 7576–7579 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Chinchilla, R. & Nájera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev. 114, 1783–1826 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Wang, D.-S., Chen, Q.-A., Lu, S.-M. & Zhou, Y.-G. Asymmetric hydrogenation of heteroarenes and arenes. Chem. Rev. 112, 2557–2590 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes. Angew. Chem. Int. Ed. 51, 10236–10254 (2012).

    Article  CAS  Google Scholar 

  13. Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. Ackermann, L. Modern Arylation Methods (Wiley, 2009).

    Book  Google Scholar 

  17. Saito, S. & Yamamoto, Y. Recent advances in the transition-metal-catalyzed regioselective approaches to polysubstituted benzene derivatives. Chem. Rev. 100, 2901–2915 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. Scott, A. P., Agranat, I., Biedermann, P. U., Riggs, N. V. & Radom, L. Fulvalenes, fulvenes and related molecules: an ab initio study. J. Org. Chem. 62, 2026–2038 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. Neuenschwander, M. Substituent effects on π-bond delocalization of fulvenes and fulvalenes. Are fulvenes aromatic? Helv. Chim. Acta 98, 763–784 (2015).

    Article  CAS  Google Scholar 

  20. Neuenschwander, M. Low-temperature olefin syntheses in view of parent fulvenes and fulvalenes. Helv. Chim. Acta 98, 731–762 (2015).

    Article  CAS  Google Scholar 

  21. Preethalayam, P. et al. Recent advances in the chemistry of pentafulvenes. Chem. Rev. 117, 3930–3989 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Beckhaus, R. Pentafulvene complexes of group four metals: versatile organometallic building blocks. Coord. Chem. Rev. 376, 467–477 (2018).

    Article  CAS  Google Scholar 

  23. Allen, A. D. & Tidwell, T. T. Antiaromaticity in open-shell cyclopropenyl to cycloheptatrienyl cations, anions, free radicals and radical ions. Chem. Rev. 101, 1333–1348 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. Wiberg, K. B. Antiaromaticity in monocyclic conjugated carbon rings. Chem. Rev. 101, 1317–1331 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. Toda, F. & Garratt, P. Four-membered ring compounds containing bis(methylene)cyclobutene or tetrakis(methylene)cyclobutane moieties. Benzocyclobutadiene, benzodicyclobutadiene, biphenylene and related compounds. Chem. Rev. 92, 1685–1707 (1992).

    Article  CAS  Google Scholar 

  26. Dong, Y. et al. Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chem. Commun. 31, 3255–3257 (2007).

    Article  Google Scholar 

  27. Bernstein, H. I. & Quimby, W. C. The photochemical dimerization of trans-cinnamic acid. J. Am. Chem. Soc. 65, 1845–1846 (1943).

    Article  CAS  Google Scholar 

  28. Blomquist, A. T. & Meinwald, Y. C. Synthesis of some conjugated cyclobutane polyolefins and their 1,2-cycloaddition to tetracyanoethylene. J. Am. Chem. Soc. 81, 667–672 (1959).

    Article  CAS  Google Scholar 

  29. Huntsman, W. D. & Wristers, H. J. 3,4-Dimethylenecyclobutene by thermal rearrangement of 1,5-hexadiyne. J. Am. Chem. Soc. 85, 3308–3309 (1963).

    Article  CAS  Google Scholar 

  30. Pasto, D. J. & Yang, S. H. A study of the stereochemistry of the electrocyclic ring closure of substituted bisallenes to substituted 3,4-bisalkylidenecyclobutenes. J. Org. Chem. 54, 3544–3549 (1989).

    Article  CAS  Google Scholar 

  31. Huntsman, W. D. & Wristers, H. J. Thermal rearrangement of 1,5-hexadiyne and related compounds. J. Am. Chem. Soc. 89, 342–347 (1967).

    Article  CAS  Google Scholar 

  32. Alcaide, B., Almendros, P. & Aragoncillo, C. Exploiting [2 + 2] cycloaddition chemistry: achievements with allenes. Chem. Soc. Rev. 39, 783–816 (2010).

    Article  PubMed  CAS  Google Scholar 

  33. Alcaide, B., Almendros, P. & Aragoncillo, C. Cyclization reactions of bis(allenes) for the synthesis of polycarbo(hetero)cycles. Chem. Soc. Rev. 43, 3106–3135 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Kitagaki, S., Inagaki, F. & Mukai, C. [2 + 2 + 1] cyclization of allenes. Chem. Soc. Rev. 43, 2956–2978 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. López, F. & Mascareñas, J. L. [4 + 2] and [4 + 3] catalytic cycloadditions of allenes. Chem. Soc. Rev. 43, 2904–2915 (2014).

    Article  PubMed  Google Scholar 

  36. Lledó, A., Pla-Quintana, A. & Roglans, A. Allenes, versatile unsaturated motifs in transition-metal-catalysed [2 + 2 + 2] cycloaddition reactions. Chem. Soc. Rev. 45, 2010–2023 (2016).

    Article  PubMed  Google Scholar 

  37. Mascareñas, J. L., Varela, I. & López, F. Allenes and derivatives in gold(I)- and platinum(II)-catalyzed formal cycloadditions. Acc. Chem. Res. 52, 465–479 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pasto, D. J. & Mitra, D. K. Synthesis of 3,4-bis(alkylidene)cyclobutenes by the reductive dimerization of propargyl chlorides. J. Org. Chem. 47, 1381–1382 (1982).

    Article  CAS  Google Scholar 

  39. Pasto, D. J. & Huang, N.-Z. Electrocyclization and cyclooligomerization reactions of 2,7-dimethyl-2,3,5,6-octatetraene with Ni(0) and Ni(II) complexes. J. Org. Chem. 50, 4465–4467 (1985).

    Article  CAS  Google Scholar 

  40. Ito, H., Sasaki, Y. & Sawamura, M. Copper(I)-catalyzed substitution of propargylic carbonates with diboron: selective synthesis of multisubstituted allenylboronates. J. Am. Chem. Soc. 130, 15774–15775 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. Zhao, T. S., Yang, Y., Lessing, T. & Szabo, K. J. Borylation of propargylic substrates by bimetallic catalysis. Synthesis of allenyl, propargylic and butadienyl Bpin derivatives. J. Am. Chem. Soc. 136, 7563–7566 (2014).

    Article  PubMed  CAS  Google Scholar 

  42. Zhao, J. & Szabó, K. J. Catalytic borylative opening of propargyl cyclopropane, epoxide, aziridine and oxetane substrates: ligand controlled synthesis of allenyl boronates and alkenyl diboronates. Angew. Chem. Int. Ed. 55, 1502–1506 (2016).

    Article  CAS  Google Scholar 

  43. Mao, L., Szabo, K. J. & Marder, T. B. Synthesis of benzyl-, allyl- and allenyl-boronates via copper-catalyzed borylation of alcohols. Org. Lett. 19, 1204–1207 (2017).

    Article  PubMed  CAS  Google Scholar 

  44. Lü, B. et al. 2,6-Diisopropoxyphenyl(dicyclohexyl)phosphine: a new ligand for palladium-catalyzed amination reactions of aryl chlorides with potassium hydroxide as the base. Adv. Synth. Catal. 353, 100–112 (2011).

    Article  Google Scholar 

  45. Lü, B., Fu, C. & Ma, S. Application of dicyclohexyl-(S)-trimethoxyphenyl phosphineHBF4 salt for the highly selective Suzuki coupling of the C–Cl bond in β-chlorobutenolides over the more reactive allylic C–O bond. Chem. Eur. J. 16, 6434–6437 (2010).

    Article  PubMed  Google Scholar 

  46. Li, P., Lü, B., Fu, C. & Ma, S. Zheda-Phos for general α-monoarylation of acetone with aryl chlorides. Adv. Synth. Catal. 355, 1255–1259 (2013).

    Article  CAS  Google Scholar 

  47. Li, Q., Fu, C. & Ma, S. Catalytic asymmetric allenylation of malonates with the generation of central chirality. Angew. Chem. Int. Ed. 51, 11783–11786 (2012).

    Article  CAS  Google Scholar 

  48. Tsutsumi, K., Ogoshi, S., Kakiuchi, K., Nishiguchi, S. & Kurosawa, H. Cross-coupling reactions proceeding through η1- and η3-propargyl/allenyl-palladium(II) intermediates. Inorg. Chim. Acta 296, 37–44 (1999).

    Article  CAS  Google Scholar 

  49. Lin, M.-J. & Loh, T.-P. Indium-mediated reaction of trialkylsilyl propargyl bromide with aldehydes: highly regioselective synthesis of allenic and homopropargylic alcohols. J. Am. Chem. Soc. 125, 13042–13043 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Krause, N. & Hashmi, A. S. K. Modern Allene Chemistry (Wiley, 2004).

  51. Lee, P. H. & Lee, K. Intermolecular tandem Pd-catalyzed cross-coupling/[4 + 4] and [4 + 2] cycloadditions: a one-pot, five-component assembly of bicyclo[6.4.0]dodecanes. Angew. Chem. Int. Ed. 44, 3253–3256 (2005).

    Article  CAS  Google Scholar 

  52. Xu, B., Mashuta, M. S. & Hammond, G. B. Crystallographic characterization of difluoropropargyl indium bromide, a reactive fluoroorganometallic reagent. Angew. Chem. Int. Ed. 45, 7265–7267 (2006).

    Article  CAS  Google Scholar 

  53. Lee, P. H., Lee, K. & Kang, Y. In situ generation of vinyl allenes and its applications to one-pot assembly of cyclohexene, cyclooctadiene, 3,7-nonadienone, and bicyclo[6.4.0]dodecene derivatives with palladium-catalyzed multicomponent reactions. J. Am. Chem. Soc. 128, 1139–1146 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. Lee, P. H. Indium and gallium-mediated addition reactions. Bull. Korean Chem. Soc. 28, 17–28 (2007).

    Article  CAS  Google Scholar 

  55. Zhu, C., Zhang, X., Lian, X. & Ma, S. One-pot approach to installing eight-membered rings onto indoles. Angew. Chem. Int. Ed. 51, 7817–7820 (2012).

    Article  CAS  Google Scholar 

  56. Toda, F., Kumada, K., Ishiguro, N. & Akagi, K. Preparation, lithium aluminum hydride reduction, and electronic spectra of halogen-substituted 3,4-bis(diphenylmethylene)cyclobutenes and -cyclobutanes. Bull. Chem. Soc. Jap. 43, 3535–3539 (1970).

    Article  CAS  Google Scholar 

  57. Cai, B.-Z. & Blackburn, G. M. The syntheses and reactions of 3,4-bisphosphono-1,2,4,5-tetraenes. Synth. Commun. 27, 3943–3949 (1997).

    Article  CAS  Google Scholar 

  58. Delas, C., Urabeb, H. & Satoa, F. Titanium-mediated intramolecular cyclization of tethered propargyl alcohol derivatives. Access to exocyclic bis-allenes and cyclobutene derivatives. Tetrahedron Lett. 42, 4147–4150 (2001).

    Article  CAS  Google Scholar 

  59. Parkhurst, R. R. & Swager, T. M. Synthesis of 3,4-bis(benzylidene)cyclobutenes. Synlett 11, 1519–1522 (2011).

    Google Scholar 

  60. Tsuji, J. & Mandai, T. Palladium-catalyzed reactions of propargylic compounds in organic synthesis. Angew. Chem. Int. Ed. 34, 2589–2612 (1995).

    Article  CAS  Google Scholar 

  61. Guo, L.-N., Duan, Xin-Hua & Liang, Y.-M. Palladium-catalyzed cyclization of propargylic compounds. Acc. Chem. Res. 44, 111–122 (2011).

    Article  PubMed  CAS  Google Scholar 

  62. Suzuki, A. Organoboron compounds in new synthetic reactions. Pure Appl. Chem. 57, 1749–1758 (1985).

    Article  CAS  Google Scholar 

  63. Tyson, E. L., Ament, M. S. & Yoon, T. P. Transition metal photoredox catalysis of radical thiol-ene reactions. J. Org. Chem. 78, 2046–2050 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key R&D Program of China (2021YFF0701600 for J.Z.), the National Natural Science Foundation of China (22071239 for Q.-A.C. and 21988101 for S.M.), the Dalian Institute of Chemical Physics (DICPI201902 for Q.-A.C.). S.M. is a Qiu Shi Adjunct Professor at Zhejiang University. We thank F. Jiang in our group for reproducing the results of 2o and 12b.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and Q.-A.C. conceived and supervised the project. S.M., Q.-A.C., J.Z., X.H. and B.-Z.C. designed the experiments. X.H., B.-Z.C., P.L., D.-W.J., J.L., H.Z., S.-N.Y., Y.-C.H., B.W., X.-P.H., C.F., Y.H. and J.Z. performed the experiments and analysed the data. All authors discussed the results and commented on the article.

Corresponding authors

Correspondence to Jian Zheng, Qing-An Chen or Shengming Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Dorian Didier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General information; synthesis of starting materials; synthesis of symmetric butafulvenes; mechanistic studies; synthesis of non-symmetric butafulvenes; DFT computations; synthetic applications; X-ray crystal structures for 2a, 5h, 18a, 19a and 22; references; copies of the 1H NMR and 13C NMR spectra.

Supplementary Data 1

Crystallographic data for compound 2a; CCDC reference 1875931.

Supplementary Data 2

Crystallographic data for compound 5h; CCDC reference 2035320.

Supplementary Data 3

Crystallographic data for compound 18a; CCDC reference 2045841.

Supplementary Data 4

Crystallographic data for compound 19a; CCDC reference 2049400.

Supplementary Data 5

Crystallographic data for compound 22; CCDC reference 2131557.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Chen, BZ., Li, P. et al. Palladium-catalysed construction of butafulvenes. Nat. Chem. 14, 1185–1192 (2022). https://doi.org/10.1038/s41557-022-01017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01017-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing