Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ambient-light-induced intermolecular Coulombic decay in unbound pyridine monomers

Abstract

Intermolecular Coulombic decay (ICD) is a process whereby photoexcited molecules relax by ionizing their neighbouring molecules. ICD is efficient when intermolecular interactions are active and consequently it is observed only in weakly bound systems, such as clusters and hydrogen-bonded systems. Here we report an efficient ICD between unbound molecules excited at ambient-light intensities. On the photoexcitation of gas-phase pyridine monomers, well below the ionization threshold and at low laser intensities, we detected the parent and heavier-than-parent cations. The isotropic emission of slow electrons revealed ICD as the underlying process. ππ* excitation in unbounded pyridine monomers triggered an associative interaction between them, which leads to an efficient three-centre ICD. The cation resulting from the molecular association of the three pyridine centres relaxed through fragmentation. This below-threshold ionization under ambient light has implications for the understanding of radiation damage and astrochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-of-flight mass spectrum (TOFMS) of the cations formed.
Fig. 2: VMI of the electrons ejected on ionization.
Fig. 3: Photoassociation of two pyridine molecules.
Fig. 4: ICD mechanisms that involve three photoexcited pyridine molecules and the eventual fragmentation of the trimer associate.
Fig. 5: Laser-power dependence of the parent cation yield.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997).

    Article  CAS  Google Scholar 

  2. Kuleff, A. I., Gokhberg, K., Kopelke, S. & Cederbaum, L. S. Ultrafast interatomic electronic decay in multiply excited clusters. Phys. Rev. Lett. 105, 043004 (2010).

    Article  PubMed  Google Scholar 

  3. Demekhin, P. V. et al. Overcoming blockade in producing doubly excited dimers by a single intense pulse and their decay. J. Phys. B 46, 021001 (2013).

    Article  Google Scholar 

  4. Jahnke, T. et al. Interatomic and intermolecular coulombic decay. Chem. Rev. 120, 11295–11369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jahnke, T. Interatomic and intermolecular coulombic decay: the coming of age story. J. Phys. B 48, 082001 (2015).

    Article  Google Scholar 

  6. Jahnke, T. et al. Photoelectron and ICD electron angular distributions from fixed-in-space neon dimers. J. Phys. B 40, 2597–2606 (2007).

    Article  CAS  Google Scholar 

  7. Ren, X. et al. Ultrafast energy transfer between π-stacked aromatic rings upon inner-valence ionization. Nat. Chem. https://doi.org/10.1038/s41557-021-00838-4 (2022).

  8. Buchta, D. et al. Charge transfer and Penning ionization of dopants in or on helium nanodroplets exposed to EUV radiation. J. Phys. Chem. A 117, 4394–4403 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Nagaya, K. et al. Interatomic coulombic decay cascades in multiply excited neon clusters. Nat. Commun. 7, 13477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dubrouil, A. et al. Two-photon resonant excitation of interatomic coulombic decay in neon dimers. J. Phys. B 48, 204005 (2015).

    Article  Google Scholar 

  11. LaForge, A. et al. Collective autoionization in multiply-excited systems: a novel ionization process observed in helium nanodroplets. Sci. Rep. 4, 3621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139–142 (2010).

    Article  CAS  Google Scholar 

  13. Richter, C. et al. Competition between proton transfer and intermolecular coulombic decay in water. Nat. Commun. 9, 4988 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sisourat, N. et al. Ultralong-range energy transfer by interatomic coulombic decay in an extreme quantum system. Nat. Phys. 6, 508–511 (2010).

    Article  CAS  Google Scholar 

  15. Gokhberg, K., Kolorenč, P., Kuleff, A. I. & Cederbaum, L. S. Site-and energy-selective slow-electron production through intermolecular coulombic decay. Nature 505, 661–663 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Havermeier, T. et al. Interatomic coulombic decay following photoionization of the helium dimer: observation of vibrational structure. Phys. Rev. Lett. 104, 133401 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Cabrera-Trujillo, R., Vendrell, O. & Cederbaum, L. S. Interatomic coulombic decay of a Li dimer in a coupled electron and nuclear dynamics approach. Phys. Rev. A 102, 032820 (2020).

    Article  CAS  Google Scholar 

  18. LaForge, A. et al. Highly efficient double ionization of mixed alkali dimers by intermolecular coulombic decay. Nat. Phys. 15, 247–250 (2019).

    Article  CAS  Google Scholar 

  19. Kumagai, Y. et al. Following the birth of a nanoplasma produced by an ultrashort hard-X-ray laser in xenon clusters. Phys. Rev. X 8, 031034 (2018).

    CAS  Google Scholar 

  20. Sandford, S. A., Nuevo, M., Bera, P. P. & Lee, T. J. Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks. Chem. Rev. 120, 4616–4659 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Feng, J.-Y. et al. IR-VUV spectroscopy of pyridine dimers, trimers and pyridine–ammonia complexes in a supersonic jet. Phys. Chem. Chem. Phys. 22, 21520–21534 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Ribeiro, F. A. et al. Fragment and cluster ions from gaseous and condensed pyridine produced under electron impact. Phys. Chem. Chem. Phys. 20, 25762–25771 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Scarborough, T. D., Foote, D. B. & Uiterwaal, C. J. G. J. Ultrafast resonance-enhanced multiphoton ionization in the azabenzenes: pyridine, pyridazine, pyrimidine, and pyrazine. J. Chem. Phys. 136, 054309 (2012).

    Article  PubMed  Google Scholar 

  24. Cooper, J. & Zare, R. N. Angular distribution of photoelectrons. J. Chem. Phys. 48, 942–943 (1968).

    Article  CAS  Google Scholar 

  25. Aravind, G., Bhargava Ram, N., Gupta, A. K. & Krishnakumar, E. Probing the influence of channel coupling on the photoelectron angular distribution for the photodetachment from Cu. Phys. Rev. A 79, 043411 (2009).

    Article  Google Scholar 

  26. Barckholtz, C., Barckholtz, T. A. & Hadad, C. M. C–H and N–H bond dissociation energies of small aromatic hydrocarbons. J. Am. Chem. Soc. 121, 491–500 (1999).

    Article  CAS  Google Scholar 

  27. Jabbari, G., Gokhberg, K. & Cederbaum, L. S. Competition between interatomic coulombic decay and autoionization of doubly-excited atoms. Chem. Phys. Lett. 754, 137571 (2020).

    Article  CAS  Google Scholar 

  28. Trinter, F. et al. Vibrationally resolved decay width of interatomic coulombic decay in hene. Phys. Rev. Lett. 111, 233004 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Cherchneff, I., Barker, J. R. & Tielens, A. G. G. M. Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes. Astrophys. J. 401, 269 (1992).

    Article  CAS  Google Scholar 

  30. Parker, D. S. N. et al. Low temperature formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs)—barrierless routes to dihydro(iso)quinolines. Astrophys. J. 815, 115 (2015).

    Article  Google Scholar 

  31. Parker, D. S. N. et al. Gas phase synthesis of (iso)quinoline and its role in the formation of nucleobases in the interstellar medium. Astrophys. J. 803, 53 (2015).

    Article  Google Scholar 

  32. Schmidt, M. W., Hull, E. A. & Windus, T. L. Valence virtual orbitals: an unambiguous ab initio quantification of the LUMO concept. J. Phys. Chem. A 119, 10408–10427 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Barca, G. M. J. et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 152, 154102 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology through project no. EMR/2016/005247 (G.A.) and the Indian Space Research Organisation through project no. ICSR/ISRO-IITM/PHY/16-17/173/GARA (G.A. and R.K.K.).

Author information

Authors and Affiliations

Authors

Contributions

S.B., G.A. and Y.S. conceived the three-centre ICD mechanism. S.B. and G.A. planned the experiment and carried out the measurements with the support of S.D., N.R.B. and R.K.K. Y.S. planned the quantum-chemistry calculations. The results were discussed among the authors. Y.S. and G.A. prepared the manuscript.

Corresponding authors

Correspondence to Y. Sajeev or G. Aravind.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Xueguang Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Methods, Calculations and Computational Details.

Supplementary Data

Data used to generate figures in the Supplementary Materials file.

Source data

Source Data Fig. 1

Data used to generate Figure 1.

Source Data Fig. 2

Data used to generate Figure 2.

Source Data Fig. 3

Data used to generate Figure 3.

Source Data Fig. 5

Data used to generate Figure 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S., Dutta, S., Behera, N.R. et al. Ambient-light-induced intermolecular Coulombic decay in unbound pyridine monomers. Nat. Chem. 14, 1098–1102 (2022). https://doi.org/10.1038/s41557-022-01002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01002-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing