Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate

Abstract

Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative photoinduced dynamics of PDI stacks.
Fig. 2: Molecular structures and steady-state results.
Fig. 3: TA spectra (narrow and broadband excitation) and analysis.
Fig. 4: fsIR spectra of 1, 2 and 3 in CD2Cl2.
Fig. 5: Vibrational coherence measurements and analysis.
Fig. 6: Potential energy surface.

Similar content being viewed by others

Data availability

Spectroscopic data and analysis, as well as the synthesis and characterization of 2 and 3, are available in the Supplementary Information. Source data are provided with this paper.

Code availability

Codes for analysing the broadband TA data are available from M.R.W. upon request.

References

  1. Vauthey, E. Photoinduced symmetry-breaking charge separation. ChemPhysChem 13, 2001–2011 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Dereka, B., Koch, M. & Vauthey, E. Looking at photoinduced charge transfer processes in the IR: answers to several long-standing questions. Acc. Chem. Res. 50, 426–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Dereka, B. & Vauthey, E. Solute-solvent interactions and excited-state symmetry breaking: beyond the dipole-dipole and the hydrogen-bond interactions. J. Phys. Chem. Lett. 8, 3927–3932 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Vos, M. H., Rappaport, F., Lambry, J.-C., Breton, J. & Martin, J.-L. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363, 320–325 (1993).

    Article  CAS  Google Scholar 

  5. Romero, E., Novoderezhkin, V. I. & van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Bartynski, A. N. et al. Symmetry-breaking charge transfer in a zinc chlorodipyrrin acceptor for high open circuit voltage organic photovoltaics. J. Am. Chem. Soc. 137, 5397–5405 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Sisson, A. L. et al. Zipper assembly of vectorial rigid-rod π-stack architectures with red and blue naphthalenediimides: toward supramolecular cascade n/p-heterojunctions. Angew. Chem. Int. Ed. 47, 3727–3729 (2008).

    Article  CAS  Google Scholar 

  8. Aratani, N., Kim, D. & Osuka, A. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc. Chem. Res. 42, 1922–1934 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Margulies, E. A. et al. Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nat. Chem. 8, 1120–1125 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Kaufmann, C. et al. Ultrafast exciton delocalization, localization and excimer formation dynamics in a highly defined perylene bisimide quadruple π-stack. J. Am. Chem. Soc. 140, 4253–4258 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, T. et al. Switching resonance character within merocyanine stacks and its impact on excited-state dynamics. Chem 7, 715–725 (2021).

    Article  CAS  Google Scholar 

  12. Wűrthner, F. et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116, 962–1052 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Kasha, M., Rawls, H. & El-Bayoumi, M. A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).

    Article  CAS  Google Scholar 

  14. Davydov, A. The theory of molecular excitons. Phys. Usp. 7, 145–178 (1964).

    Article  Google Scholar 

  15. Hestand, N. J. & Spano, F. C. Molecular aggregate photophysics beyond the Kasha model: novel design principles for organic materials. Acc. Chem. Res. 50, 341–350 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Oleson, A. et al. Perylene diimide-based Hj- and hJ-aggregates: the prospect of exciton band shape engineering in organic materials. J. Phys. Chem. C 123, 20567–20578 (2019).

    Article  CAS  Google Scholar 

  18. Zubiria-Ulacia, M., Matxain, J. M. & Casanova, D. The role of CT excitations in PDI aggregates. Phys. Chem. Chem. Phys. 22, 15908–15918 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Canola, S. et al. Addressing the Frenkel and charge transfer character of exciton states with a model Hamiltonian based on dimer calculations: application to large aggregates of perylene bisimide. J. Chem. Phys. 154, 124101 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Bialas, D., Kirchner, E., Röhr, M. I. S. & Würthner, F. Perspectives in dye chemistry: a rational approach toward functional materials by understanding the aggregate state. J. Am. Chem. Soc. 143, 4500–4518 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Lim, J. M. et al. Exciton delocalization and dynamics in helical π-stacks of self-assembled perylene bisimides. Chem. Sci. 4, 388–397 (2013).

    Article  CAS  Google Scholar 

  22. Son, M., Park, K. H., Shao, C., Wurthner, F. & Kim, D. Spectroscopic demonstration of exciton dynamics and excimer formation in a sterically controlled perylene bisimide dimer aggregate. J. Phys. Chem. Lett. 5, 3601–3607 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Margulies, E. A., Shoer, L. E., Eaton, S. W. & Wasielewski, M. R. Excimer formation in cofacial and slip-stacked perylene-3,4:9,10-bis (dicarboximide) dimers on a redox-inactive triptycene scaffold. Phys. Chem. Chem. Phys. 16, 23735–23742 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Sung, J., Kim, P., Fimmel, B., Wűrthner, F. & Kim, D. Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides. Nat. Commun. 6, 8646 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Mauck, C. M., Young, R. M. & Wasielewski, M. R. Characterization of excimer relaxation via femtosecond shortwave- and mid-infrared spectroscopy. J. Phys. Chem. A 121, 784–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, W. et al. Solvent-modulated charge-transfer resonance enhancement in the excimer state of a bay-substituted perylene bisimide cyclophane. J. Phys. Chem. Lett. 10, 1919–1927 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Myong, M. S., Zhou, J., Young, R. M. & Wasielewski, M. R. Charge-transfer character in excimers of perylenediimides self-assembled on anodic aluminum oxide membrane walls. J. Phys. Chem. C 124, 4369–4377 (2020).

    Article  CAS  Google Scholar 

  28. Kang, S., Kim, T., Hong, Y., Wűrthner, F. & Kim, D. Charge-delocalized state and coherent vibrational dynamics in rigid PBI H-aggregates. J. Am. Chem. Soc. 143, 9825–9833 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Giaimo, J. M., Gusev, A. V. & Wasielewski, M. R. Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation. J. Am. Chem. Soc. 124, 8530–8531 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Sung, J. et al. Direct observation of excimer-mediated intramolecular electron transfer in a cofacially-stacked perylene bisimide pair. J. Am. Chem. Soc. 138, 9029–9032 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Ramirez, C. E. et al. Symmetry-breaking charge separation in the solid state: tetra(phenoxy)perylenediimide polycrystalline films. J. Am. Chem. Soc. 142, 18243–18250 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Coleman, A. F. et al. Reversible symmetry-breaking charge separation in a series of perylenediimide cyclophanes. J. Phys. Chem. C 124, 10408–10419 (2020).

    Article  CAS  Google Scholar 

  33. Farag, M. H. & Krylov, A. I. Singlet fission in perylenediimide dimers. J. Phys. Chem. C 122, 25753–25763 (2018).

    Article  CAS  Google Scholar 

  34. Le, A. K. et al. Singlet fission involves an interplay between energetic driving force and electronic coupling in perylenediimide films. J. Am. Chem. Soc. 140, 814–826 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Carlotti, B. et al. Activating intramolecular singlet exciton fission by altering π-bridge flexibility in perylene diimide trimers for organic solar cells. Chem. Sci. 11, 8757–8770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hong, Y. et al. Efficient multiexciton state generation in charge-transfer-coupled perylene bisimide dimers via structural control. J. Am. Chem. Soc. 142, 7845–7857 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Hoche, J. et al. The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer. Phys. Chem. Chem. Phys. 19, 25002–25015 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Hoche, J. et al. Excimer formation dynamics in the isolated tetracene dimer. Chem. Sci. 12, 11965–11975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mandal, A. et al. Two-dimensional electronic spectroscopy reveals excitation energy-dependent state mixing during singlet fission in a terrylenediimide dimer. J. Am. Chem. Soc. 140, 17907–17914 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Young, R. M. & Wasielewski, M. R. Mixed electronic states in molecular dimers: connecting singlet fission, excimer formation and symmetry-breaking charge transfer. Acc. Chem. Res. 53, 1957–1968 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kistler, K., Pochas, C., Yamagata, H., Matsika, S. & Spano, F. Absorption, circular dichroism and photoluminescence in perylene diimide bichromophores: polarization-dependent H- and J-aggregate behavior. J. Phys. Chem. B 116, 77–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Kaufmann, C., Bialas, D., Stolte, M. & Wűrthner, F. Discrete π-stacks of perylene bisimide dyes within folda-dimers: insight into long- and short-range exciton coupling. J. Am. Chem. Soc. 140, 9986–9995 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Sebastian, E. & Hariharan, M. Null exciton-coupled chromophoric dimer exhibits symmetry-breaking charge separation. J. Am. Chem. Soc. 143, 13769–13781 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, Y. et al. Ultrafast photoinduced symmetry-breaking charge separation and electron sharing in perylenediimide molecular triangles. J. Am. Chem. Soc. 137, 13236–13239 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. De Sio, A. et al. Tracking the coherent generation of polaron pairs in conjugated polymers. Nat. Commun. 7, 13742 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bakulin, A. A. et al. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8, 16–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. De Sio, A. & Lienau, C. Vibronic coupling in organic semiconductors for photovoltaics. Phys. Chem. Chem. Phys. 19, 18813–18830 (2017).

    Article  PubMed  Google Scholar 

  49. Stern, H. L. et al. Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission. Nat. Chem. 9, 1205–1212 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Miyata, K. et al. Coherent singlet fission activated by symmetry breaking. Nat. Chem. 9, 983–989 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Gaynor, J. D., Sandwisch, J. & Khalil, M. Vibronic coherence evolution in multidimensional ultrafast photochemical processes. Nat. Commun. 10, 5621 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arsenault, E. A., Bhattacharyya, P., Yoneda, Y. & Fleming, G. R. Two-dimensional electronic-vibrational spectroscopy: exploring the interplay of electrons and nuclei in excited state molecular dynamics. J. Chem. Phys. 155, 020901 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Schultz, J. D. et al. Influence of vibronic coupling on ultrafast singlet fission in a linear terrylenediimide dimer. J. Am. Chem. Soc. 143, 2049–2058 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Halpin, A. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6, 196–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Lim, J. et al. Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat. Commun. 6, 7755 (2015).

    Article  PubMed  Google Scholar 

  56. Christensson, N., Kauffmann, H. F., Pullerits, T. & Mančal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, W. et al. Tracking structural evolution during symmetry-breaking charge separation in quadrupolar perylene bisimide with time-resolved impulsive stimulated Raman spectroscopy. Angew. Chem. Int. Ed. 59, 8571–8578 (2020).

    Article  CAS  Google Scholar 

  58. Rafiq, S., Fu, B., Kudisch, B. & Scholes, G. D. Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. Nat. Chem. 13, 70–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, P. et al. Ultrafast excited-state dynamics of photoluminescent Pt(II) dimers probed by a coherent vibrational wavepacket. J. Phys. Chem. Lett. 12, 6794–6803 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Rafiq, S. & Scholes, G. D. From fundamental theories to quantum coherences in electron transfer. J. Am. Chem. Soc. 141, 708–722 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Young, R. M. et al. Ultrafast conformational dynamics of electron transfer in ExBox4+perylene. J. Phys. Chem. A 117, 12438–12448 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award no. DE-FG02-99ER14999 (to M.R.W.). This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1842165 (to J.D.S.). This work made use of the IMSERC MS and NMR facility at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633), the State of Illinois, the International Institute for Nanotechnology (IIN) and Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

C.L. synthesized and characterized the molecules, acquired the narrowband TA data, analysed the data and prepared the manuscript. T.K. acquired the broadband TA and fsIR data, analysed the data, performed the computational studies and prepared the manuscript. J.D.S. analysed the broadband TA data. M.R.W. and R.M.Y. designed the experiments, directed the investigations and prepared the manuscript with contributions from all the authors. All authors contributed to discussions.

Corresponding authors

Correspondence to Ryan M. Young or Michael R. Wasielewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Mahesh Hariharan, Dongho Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–55, Discussion and Tables 1–6.

Source data

Source Data Fig. 2

Steady-state absorption and fluorescence of 1, 2, and 3 in THF.

Source Data Fig. 3

Narrowband and broadband transient absorption results.

Source Data Fig. 4

Femtosecond infrared data in deuterated dichloromethane.

Source Data Fig. 5

Wavepacket data including FT power, residuals, short-time FT, and FFT filter results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Kim, T., Schultz, J.D. et al. Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat. Chem. 14, 786–793 (2022). https://doi.org/10.1038/s41557-022-00927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00927-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing