Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation


The main feedstock for the value-added phosphorus chemicals used in industry and research is white phosphorus (P4), from which the key intermediate for forming P(III) compounds is PCl3. Owing to its high reactivity, syntheses based on PCl3 are often accompanied by product mixtures and laborious work-up procedures, so an alternative process to form a viable P(III) transfer reagent is desirable. Our concept of oxidative onioation, where white phosphorus is selectively converted into triflate salts of versatile P1 transfer reagents such as [P(LN)3][OTf]3 (LN is a cationic, N-based substituent; that is, 4-dimethylaminopyridinio), provides a convenient alternative for the implementation of P–O, P–N and P–C bonds while circumventing the use of PCl3. We use p-block element compounds of type RnE (for example, Ph3As or PhI) to access weak adducts between nitrogen Lewis bases LN and the corresponding dications [RnELN]2+. The proposed equilibrium between [RnELN]2+ + LN and [RnE(LN)2]2+ allows for the complete oxidative onioation of all six P–P bonds in P4 to yield highly reactive and versatile trications [P(LN)3]3+.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Routes into value-added phosphorus chemicals from phosphate rock.
Fig. 2: Formation of butterfly compound 3[OTf]2 via oxidative onioation of P4.
Fig. 3: Onio-ligand-assisted deoxygenation reactions of compounds Ph3AsO and PhIO.
Fig. 4: Selective oxidative onioation of white phosphorus (P4) to P1 transfer reagents.
Fig. 5: Mechanistic investigation of the successive degradation of white phosphorus with weak adduct 5[OTf]2.
Fig. 6: Application of 11[OTf]3 as an alternative to PCl3 in P–O, P–N and P–C bond-formation reactions.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. All structures have been deposited with the Cambridge Crystallographic Data Centre (CCDC) and can be accessed free of charge via under the numbers 2105521 (2[OTf]2), 2019149 (5[OTf]2·CH2Cl2), 2105523 (5[BArF]2), 2019148 (6[OTf]2), 2019145 (7[OTf]2), 2019147 (11[OTf]3·CH2Cl2), 2061965 (12[OTf]·0.67 MeNO2), 2105520 ((LN)2POP(LN)2[OTf]4·4 CH3CN), 2019146 (14[OTf]3·2 CH3CN) and 2061966 (24g).


  1. Schipper, W. Phosphorus: too big to fail. Eur. J. Inorg. Chem. 2014, 1567–1571 (2014).

    Article  CAS  Google Scholar 

  2. Emsley, J. The 13th Element: The Sordid Tale of Murder, Fire and Phosphorus (Wiley, 2000).

  3. Diskowski, H. & Hofmann T. in Ullmann’s Encyclopedia of Industrial Chemistry 6th edn (Wiley, 2002).

  4. Schrödter, K., Bettermann, G., Staffel, T., Klein, T. & Hofmann, T. in Ullmann’s Encyclopedia of Industrial Chemistry 6th edn (Wiley, 2002).

  5. Withers, P. J. A. et al. Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability. Green Chem. 17, 2087–2099 (2015).

    Article  CAS  Google Scholar 

  6. Jupp, A. R., Beijert, S., Narain, G. C., Schipper, W. & Slootweg, J. C. Phosphorus recovery and recycling—closing the loop. Chem. Soc. Rev. 50, 87–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Cossairt, B. M., Piro, N. A. & Cummins, C. C. Early-transition-metal-mediated activation and transformation of white phosphorus. Chem. Rev. 110, 4164–4177 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Caporali, M., Gonsalvi, L., Rossin, A. & Peruzzini, M. P4 activation by late-transition metal complexes. Chem. Rev. 110, 4178–4235 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hoidn, C. M., Scott, D. J. & Wolf, R. Transition-metal-mediated functionalization of white phosphorus. Chem. Eur. J. 27, 1886–1902 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Scheer, M., Balazs, G. B. & Seitz, A. P4 activation by main group elements and compounds. Chem. Rev. 110, 4236–4256 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Giffin, N. A. & Masuda, J. D. Reactivity of white phosphorus with compounds of the p-block. Coord. Chem. Rev. 255, 1342–1359 (2011).

    Article  CAS  Google Scholar 

  12. Holthausen, M. & Weigand, J. J. The chemistry of cationic polyphosphorus cages—syntheses, structure and reactivity. Chem. Soc. Rev. 43, 6639–6675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borger, J. E., Ehlers, A. W., Slootweg, J. C. & Lammertsma, K. Functionalization of P4 through direct P-C bond formation. Chem. Eur. J. 23, 11738–11746 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Gantner, O., Schipper, W. & Weigand J. J. Sustainable Phosphorus Management 1st edn (Springer, 2014).

  15. Lennert, U. et al. Directs catalytic transformation of white phosphorus into arylphosphines and phosphonium salts. Nat. Catal. 2, 1101–1106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scott, D. J., Cammarata, J., Schimpf, M. & Wolf, R. Synthesis of monophosphines directly from white phosphorus. Nat. Chem. 13, 458–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Schoemaker, R., Schwedtmann, K. & Weigand, J. J. Pyrazolyl-substituted phosphorus(III) compounds in synthesis. Coord. Chem. Rev. 436, 213829 (2021).

    Article  CAS  Google Scholar 

  18. Feldmann, K.-O., Fröhlich, R. & Weigand, J. J. Access to catenated and branched polyphosphorus ligands and coordination complexes via a tri(pyrazolyl)phosphane. Chem. Commun. 48, 4296–4298 (2012).

    Article  CAS  Google Scholar 

  19. Feldmann, K.-O. & Weigand, J. J. P-N/P-P bond metathesis for the synthesis of complex polyphosphanes. J. Am. Chem. Soc. 134, 15443–15456 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Schoemaker, R. et al. Controlled scrambling reactions to polyphosphanes via bond metathesis reactions. Chem. Sci. 10, 11054–11063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taube, C. et al. P-P condensation and P-N/P-P bond metathesis: facile synthesis of cationic tri- and tetraphosphanes. Angew. Chem. Int. Ed. 59, 3585–3591 (2020).

    Article  CAS  Google Scholar 

  22. Weigand, J. J., Feldmann, K.-O., Echterhoff, A. K. C., Ehlers, A. & Lammertsma, K. Preparation of ligand-stabilized [P4O4]2+ by controlled hydrolysis of a Janus head type diphosphorus trication. Angew. Chem. Int. Ed. 49, 6178–6181 (2010).

    Article  CAS  Google Scholar 

  23. Feldmann, K.-O., Schulz, S., Klotter, F. & Weigand, J. J. A versatile protocol for the quantitative and smooth conversion of phosphane oxides into synthetically useful pyrazolylphosphonium salts. ChemSusChem 4, 1805–1812 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Echterhoff, A. K. C., Yogendra, S., Kösters, J., Fischer, R. & Weigand, J. J. A versatile protocol for the synthesis of pyrazolyl-substituted pyridinium and guanidinium salts from pyridone and urea derivatives. Eur. J. Org. Chem. 34, 7631–7642 (2014).

    Article  Google Scholar 

  25. Weiss, R., Salomon, N. J., Miess, G. E. & Roth, R. Poly-onio-substituted quinones as strong electron acceptors. Angew. Chem. Int. Ed. 25, 917–919 (1986).

    Article  Google Scholar 

  26. Weiss, R. & Engel, S. Poly-oÿnio substituted phosphorus compounds. Synthesis 1991, 1077–1079 (1991).

    Article  Google Scholar 

  27. Schorpp, M. et al. Synthesis and application of a perfluorinated ammoniumyl radical cation as a very strong deelectronator. Angew. Chem. Int. Ed. 59, 9453–9459 (2020).

    Article  CAS  Google Scholar 

  28. Geeson, M. B. & Cummins, C. C. Phosphoric acid as precursor to chemicals traditionally synthesized from white phosphorus. Science 359, 1383–1385 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Geeson, M. B. & Cummins, C. C. Let’s make white phosphorus obsolete. ACS Cent. Sci. 6, 848–860 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Chitnis, S. S. et al. Bipyridine complexes of E3+ (E = P, As, Sb, Bi): strong Lewis acids, sources of E(OTf)3 and synthons for EI and EV cations. Chem. Sci. 6, 6545–6555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donath, M., Bodensteiner, M. & Weigand, J. J. Versatile reagent Ph3As(OTf)2: one-pot synthesis of [P7(AsPh3)3][OTf]3 from PCl3. Chem. Eur. J. 20, 17306–17310 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Robertson, A. P. M. et al. Establishing the coordination chemistry of antimony(V) cations: systematic assessment of Ph4Sb(OTf) and Ph3Sb(OTf)2 as Lewis acceptors. Chem. Eur. J. 21, 7902–7913 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Donath, M. et al. Ligand-stabilized [P4]2+ cations. Angew. Chem. Int. Ed. 51, 2964–2967 (2012).

    Article  CAS  Google Scholar 

  34. Sapsford, J. S. et al. Establishing the role of triflate anions in H2 activation by a cationic triorganotin(IV) Lewis acid. ACS Catal. 10, 7573–7583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scott, D. A. et al. Versatile catalytic hydrogenation using a simple tin(IV) Lewis acid. Angew. Chem. Int. Ed. 55, 14738–14742 (2016).

    Article  CAS  Google Scholar 

  36. Woessner, D. E. Brownian motion and its effects in NMR chemical exchange and relaxation in liquids. Concept Magnetic Res. 8, 397–442 (1996).

    Article  CAS  Google Scholar 

  37. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  38. Perdew, J. P. Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 34, 7406 (1986).

    Article  CAS  Google Scholar 

  39. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822 (1986).

    Article  CAS  Google Scholar 

  40. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154119 (2010).

    Article  PubMed  Google Scholar 

  41. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuaracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Mo, H., Wang, A., Wilkinson, P. S. & Pochapsky, T. C. Closed-shell ion pairs: cation and aggregate dynamics of tetraalkylammonium salts in an ion-pairing solvent. J. Am. Chem. Soc. 119, 11666–11673 (1997).

    Article  CAS  Google Scholar 

  43. Marcus, Y. Electrostriction, ion solvation, and solvent release on ion pairing. J. Phys. Chem. B 109, 18541–18549 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hendrickson, J. B. in Encyclopaedia of Reagents for Organic Synthesis Vol. 8 (ed. Paquette, L. A.) 5405–5407 (Wiley, 1995).

  45. Hendrickson, J. B. & Hussoin, Md. S. Reactions of carboxylic acids with phosphonium anhydrides. J. Org. Chem. 52, 4137–4139 (1987).

    Article  Google Scholar 

  46. Rovnaník, P., Kapička, L., Taraba, J. & Černík, M. Base-induced dismutation of POCl3 and POBr3: synthesis of ligand-stabilized dioxophosphonium cations. Inorg. Chem. 43, 2435–2442 (2004).

    Article  PubMed  Google Scholar 

  47. Foris, A. 19F and 1H NMR spectra of halocarbons. Magn. Reson. Chem. 42, 534–555 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Weiss, R. & Seubert, J. Electrostatic activation of hypervalent organo-iodine compounds: bis(onio)-substituted aryliodine(III) salts. Angew. Chem. Int. Ed. 33, 891–893 (1994).

    Article  Google Scholar 

  49. Weigand, J. J. & Burford, N. in Comprehensive Inorganic Chemistry II: From Elements to Applications (eds Reedijk, J. & Poeppelmeier, K.) 119–149 (Elsevier, 2013).

  50. Pommer, H. The Wittig reaction in industrial practice. Angew. Chem. Int. Ed. 16, 423–429 (1977).

    Article  Google Scholar 

  51. Bertau, M., Müller, A., Fröhlich, P. & Katzberg, M. Industrielle Anorganische Chemie 4th edn (Wiley, 2013).

  52. Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology 6th edn (CRC Press, 2013).

  53. Fest, C. & Schmidt, K.-J. Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel Vol. 1. (Springer, 1970).

  54. Dill, G. M. et al. Glyphosate: Discovery, Development, Applications, and Properties (Wiley, 2000).

  55. Panzer, R. et al. Versatile tri(pyrazolyl)phosphanes as precursor for the synthesis of highly emitting InP/ZnS quantum dots. Angew. Chem. Int. Ed. 56, 14737–14742 (2017).

    Article  CAS  Google Scholar 

  56. Guo, H., Fan, Y. C., Sun, Z., Wu, Y. & Kwon, O. Phosphine organocatalysis. Chem. Rev. 118, 10049–10293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Levason, W. in Organophosphorus Compounds (ed. Hartley, F. R.) Ch. 15, 567–641 (Wiley, 1990).

  58. Maryanoff, B. E. & Reitz, A. B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 89, 863–927 (1989).

    Article  CAS  Google Scholar 

  59. Leutkens, M. L. Jr, Sattelberger, A. P., Murray, H. H., Basil, J. D. & Fackler, J. P. Jr. in Inorganic Syntheses (ed. Angelici, R. J.) Ch. 8, 305–310 (Wiley, 1990).

  60. Chaloux, B. L. et al. P(CN)3 precursor for carbon phosphonitride extended solids. Chem. Mater. 27, 4507–4510 (2015).

    Article  CAS  Google Scholar 

  61. Weiss, R. & Engel, S. Electrostatic activation of nucleofuges: cationic leaving groups. Angew. Chem. Int. Ed. 31, 216–217 (1992).

    Article  Google Scholar 

  62. Hengfeld, A. & Nast, R. CC Streckfrequenzen und δ31P-Werte der Phosphane P(CCC6H5)n(C6H5)3-n. Chem. Ber. 116, 2035–2036 (1983).

    Google Scholar 

Download references


We thank the European Research Council (ERC starting grant, SynPhos-307616), the German Science foundation (WE 4621/6-1) and TU Dresden for financial support. A.B. and A.F. thank MICIU/AEI of Spain (project no. PID2020-115637GB-I00, FEDER funds) for financial support. We thank S. Albrecht for alcoholysis reactions and P. Lange for experimental assistance and elemental analysis measurements. We also thank N. Rae Brindle for helpful discussions. Solvay Chemicals is gratefully acknowledged for their donation of the chemicals Me3SiOTf and Tf2O.

Author information

Authors and Affiliations



M.D., K.S. and J.J.W. developed the oxidative onioation procedures, developed the initial procedures for formation of the final products and performed mechanistic studies. M.D., K.S. and T.S. optimized the synthesis, isolation and purifications of products from P1 synthons. A.B. and A.F. performed the quantum chemical calculations. F.H. and J.J.W. were responsible for collecting X-ray data and refinement. K.S. and J.J.W. prepared the manuscript. K.S. and J.J.W. conceived, oversaw and directed the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jan J. Weigand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 31P NMR spectra of the reaction of P4 with 1 equiv. of 22+ as either OTf or BArF salt.

a, 31P NMR spectrum (CH3CN, C6D6-capillary, 300 K) of the reaction of P4 with 2[OTf]2 showing resonances for P4 and butterfly compound 32+ (δ(PA) = –327.6 ppm, δ(PX) = –174.9 ppm); b, 31P NMR spectrum (CH3CN / CH2Cl2, C6D6-capillary, 300 K) of the reaction of P4 with 2[BArF]2 showing resonances for P4 and trace amounts of 32+ (δ(PA) = –328.3 ppm, δ(PX) = –175.1 ppm).

Extended Data Fig. 2 Complementary DFT investigations regarding the equilibrium between Ph3As(Quin)2+ (72+) and Ph3As(Quin)(OTf)+ (8+).

a, Optimized geometries and energy difference for Ph3As(Quin)(OTf)+ and Ph3As(Quin)2+; b, Results of the thermochemical calculations on the equilibrium between quinoline, Ph3As(OTf)2 and Ph3As(Quin)(OTf)+ (BP86-D3/def2-TZVP level of theory); Quin = quinoline.

Extended Data Fig. 3 Molecular structures of tetracation (LN)2POP(LN)24+ (LN = DMAP) in (LN)2POP(LN)2[OTf]4 ∙ 4 CH3CN.

Thermal ellipsoids are displayed at 50% probability level and hydrogen atoms and counterions are omitted for clarity.

Extended Data Fig. 4 Compounds being formed in the degradation of P4.

a, Structures are derived from the obtained resonances in the 31P NMR spectra (b) of the reaction of P4 with an excess of oxidant 2[OTf]2 and varying amounts of DMAP (LN).

Extended Data Fig. 5 Optimized geometries and energy differences of the proposed intermediates in the mechanism of the successive degradation of P4 with Ph3As(LN)2[OTf]2 (5[OTf]2, LN = DMAP).

Computed on BP86-D3/def2-TZVP level of theory; overall Gibb’s energy ΔG = –30.9 kcal/mol. Energies in dichloromethane.

Supplementary information

Supplementary Information

Materials and methods, synthesis and procedures, characterization data, NMR spectra, crystallographic data, DFT calculation data, references, Figs. 1–74, Tables 1–3 and Schemes 1 and 2.

Supplementary Data 1

Crystallographic data for compound 2[OTf]2; CCDC reference 2105521.

Supplementary Data 2

Crystallographic data for compound 5[OTf]2; CCDC reference 2105520.

Supplementary Data 3

Crystallographic data for compound 5[BArF]2; CCDC reference 2105523.

Supplementary Data 4

Crystallographic data for compound 6[OTf]2; CCDC reference 2019148.

Supplementary Data 5

Crystallographic data for compound 7[OTf]2; CCDC reference 2019145.

Supplementary Data 6

Crystallographic data for compound 11[OTf]3; CCDC reference 2019147.

Supplementary Data 7

Crystallographic data for compound 12[OTf]; CCDC reference 2061965.

Supplementary Data 8

Crystallographic data for compound (LN)2POP(LN)2[OTf]4; CCDC reference 2105520.

Supplementary Data 9

Crystallographic data for compound 14[OTf]3; CCDC reference 2019146.

Supplementary Data 10

Crystallographic data for compound 24g; CCDC reference 2061966.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donath, M., Schwedtmann, K., Schneider, T. et al. Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation. Nat. Chem. 14, 384–391 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing