Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights from an information thermodynamics analysis of a synthetic molecular motor

Abstract

Information is physical, a realization that has transformed the physics of measurement and communication. However, the flow between information, energy and mechanics in chemical systems remains largely unexplored. Here we analyse a minimalist autonomous chemically driven molecular motor in terms of information thermodynamics, a framework that quantitatively relates information to other thermodynamic parameters. The treatment reveals how directional motion is generated by free energy transfer from chemical to mechanical (conformational and/or co-conformational) processes by ‘energy flow’ and ‘information flow’. It provides a thermodynamic level of understanding of molecular motors that is general, complements previous analyses based on kinetics and has practical implications for machine design. In line with kinetic analysis, we find that power strokes do not affect the directionality of chemically driven machines. However, we find that power strokes can modulate motor velocity, the efficiency of free energy transfer and the number of fuel molecules consumed per cycle. This may help explain the role of such (co-)conformational changes in biomachines and illustrates the interplay between energy and information in chemical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A Rosetta Stone for chemical (reactions and co-conformational dynamics) and information thermodynamics descriptions of a molecular motor: two distinct but complementary accounts of the processes involved in a minimalist, autonomous, chemically fuelled, molecular rotary motor.
Fig. 2: Rotary motor as an open and bipartite chemical reaction network.
Fig. 3: Numerical simulations of different molecular motor design modifications.
Fig. 4: Potential ways of achieving different molecular motor design modifications.

Similar content being viewed by others

Data availability

All data needed to reproduce the numerical results are reported in the Supplementary Information.

Code availability

The code that generated the plots is available at the following link: gitlab.com/emanuele.penocchio/infothermorotmot

References

  1. Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    Article  Google Scholar 

  5. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Oxford Univ. Press, 2001).

    Google Scholar 

  7. Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. Chemphyschem 17, 1719–1741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel Prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Esposito, M. Open questions on nonequilibrium thermodynamics of chemical reaction networks. Commun. Chem. 3, 107 (2020).

    Article  Google Scholar 

  19. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Mock, W. L. & Ochwat, K. J. Theory and example of a small-molecule motor. J. Phys. Org. Chem. 16, 175–182 (2003).

    Article  CAS  Google Scholar 

  21. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Collins, B. S. L., Kistemaker, J. C. M., Otten, E. & Feringa, B. L. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nat. Chem. 8, 860–866 (2016).

    Article  CAS  Google Scholar 

  23. Zhang, Y. et al. A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality. Chem 6, 2420–2429 (2020).

    Article  CAS  Google Scholar 

  24. Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  PubMed  Google Scholar 

  26. Parrondo, J. M. R. & de Cisneros, B. J. Energetics of Brownian motors: a review. Appl. Phys. A 75, 179–191 (2002).

    Article  CAS  Google Scholar 

  27. Esposito, M., Lindenberg, K. & Van den Broeck, C. Universality of efficiency at maximum power. Phys. Rev. Lett. 102, 130602 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Benenti, G., Casati, G., Saito, K. & Whitney, R. S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017).

    Article  CAS  Google Scholar 

  29. Jarzynski, C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011).

    Article  CAS  Google Scholar 

  30. Peliti, L. & Pigolotti, S. Stochastic Thermodynamics: An Introduction (Princeton Univ. Press, 2021).

    Google Scholar 

  31. Andrieux, D. & Gaspard, P. Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors. Phys. Rev. E 74, 011906 (2006).

    Article  CAS  Google Scholar 

  32. Lipowsky, R. & Liepelt, S. Chemomechanical coupling of molecular motors: thermodynamics, network representations, and balance conditions. J. Stat. Phys. 130, 39–67 (2008).

    Article  Google Scholar 

  33. Toyabe, S. et al. Nonequilibrium energetics of a single F1-ATPase molecule. Phys. Rev. Lett. 104, 198103 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Ariga, T., Tomishige, M. & Mizuno, D. Nonequilibrium energetics of molecular motor kinesin. Phys. Rev. Lett. 121, 218101 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Ciliberto, S. Experiments in stochastic thermodynamics: short history and perspectives. Phys. Rev. X 7, 021051 (2017).

    Google Scholar 

  37. McGrath, T., Jones, N. S., ten Wolde, P. R. & Ouldridge, T. E. Biochemical machines for the interconversion of mutual information and work. Phys. Rev. Lett. 118, 028101 (2017).

    Article  PubMed  Google Scholar 

  38. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, 2012).

    Google Scholar 

  39. Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).

    Article  CAS  Google Scholar 

  40. Horowitz, J. M. & Esposito, M. Thermodynamics with continuous information flow. Phys. Rev. X 4, 031015 (2014).

    Google Scholar 

  41. Leff, H. S. & Rex, A. F. (eds) Maxwell’s Demon: Entropy, Information, Computing (Princeton Univ. Press, 1990).

  42. Rao, R. & Esposito, M. Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics. Phys. Rev. X 6, 041064 (2016).

    Google Scholar 

  43. Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wagoner, J. A. & Dill, K. A. Mechanisms for achieving high speed and efficiency in biomolecular machines. Proc. Natl Acad. Sci. USA 116, 5902–5907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Howard, J. Protein power strokes. Curr. Biol. 16, R517–R519 (2006).

    Article  Google Scholar 

  46. Hwang, W. & Karplus, M. Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc. Natl Acad. Sci. USA 116, 19777–19785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Das, K., Gabrielli, L. & Prins, L. J. Chemically-fueled self-assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    Article  CAS  Google Scholar 

  50. Albaugh, A. & Gingrich, T. R. Simulating a chemically-fueled molecular motor with nonequilibrium molecular dynamics. Preprint at https://doi.org/10.48550/arXiv.2102.06298 (2021).

  51. Horowitz, J. M., Sagawa, T. & Parrondo, J. M. R. Imitating chemical motors with optimal information motors. Phys. Rev. Lett. 111, 010602 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Fyfe, M. C. T. et al. Anion-assisted self-assembly. Angew. Chem. Int. Ed. 36, 2068–2070 (1997).

    Article  CAS  Google Scholar 

  53. Astumian, R. D. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hartich, D., Barato, A. C. & Seifert, U. Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech. Theory Exp. 2014, P02016 (2014).

    Article  Google Scholar 

  55. Kondepudi, D. K. & Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, 2015).

    Google Scholar 

  56. Astumian, R. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kinosita, K. Jr., Yasuda, R., Noji, H. & Adachi, K. A rotary molecular motor that can work at near 100% efficiency. Philos. Trans. R. Soc. Lond. B 355, 473–489 (2000).

    Article  CAS  Google Scholar 

  58. Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. W. & Walker, J. E. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl Acad. Sci. USA 107, 16823–16827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petersen, J., Förster, K., Turina, P. & Gräber, P. Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. Proc. Natl Acad. Sci. USA 109, 11150–11155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hill, T. L. Free Energy Transduction in Biology (Academic Press, 1977).

    Google Scholar 

  61. Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  PubMed  CAS  Google Scholar 

  62. Carlone, A., Goldup, S. M., Lebrasseur, N., Leigh, D. A. & Wilson, A. A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 134, 8321–8323 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Lussis, P. et al. A single synthetic small molecule that generates force against a load. Nat. Nanotechnol. 6, 553–557 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  66. Blackmond, D. G. ‘If pigs could fly’ chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Ed. 48, 2648–2654 (2009).

    Article  CAS  Google Scholar 

  67. Katz, S., Lebowitz, J. L. & Spohn, H. Phase transitions in stationary nonequilibrium states of model lattice systems. Phys. Rev. B 28, 1655–1658 (1983).

    Article  CAS  Google Scholar 

  68. Esposito, M. Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012).

    Article  CAS  Google Scholar 

  69. Maes, C. Local detailed balance. SciPost Phys. Lect. Notes 32, https://doi.org/10.48550/arXiv.2102.06298 (2021).

Download references

Acknowledgements

We acknowledge support from the European Research Council (ERC Consolidator grant no. 681456 to M.E. and funding to E.P.; ERC Advanced grant no. 786630 to D.A.L.), the FQXi Foundation, project ‘Information as a fuel in colloids and superconducting quantum circuits’ (grant no. FQXi-IAF19-05 to M.E.), the Engineering and Physical Sciences Research Council (EPSRC; grant no. EP/P027067/1 to D.A.L.), the Deutsche Forschungsgemeinschaft (a postdoctoral fellowship to E.K.) and the University of Manchester and EPSRC for PhD studentships to S.A. and B.M.W.R. D.A.L. is a Royal Society Research Professor. We thank R. D. Astumian for valuable discussions regarding the science in this study as well as robust debate regarding the use of the term ‘local detailed balance’ within the stochastic thermodynamics community.

Author information

Authors and Affiliations

Authors

Contributions

S.A., B.M.W.R. and E.K. proposed the collaboration. E.P. developed the theoretical model. S.A., B.M.W.R., E.P. and E.K. carried out the theoretical analysis and simulations. D.A.L. and M.E. directed the research. All authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding authors

Correspondence to David A. Leigh or Emanuele Penocchio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VI, Figs. 1–6, equations 1–70 and Table I.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amano, S., Esposito, M., Kreidt, E. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. 14, 530–537 (2022). https://doi.org/10.1038/s41557-022-00899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00899-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing