Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible C–C bond formation using palladium catalysis

Abstract

A widely appreciated principle is that all reactions are fundamentally reversible. Observing reversible transition metal-catalysed reactions, particularly those that include the cleavage of C–C bonds, is more challenging. The development of palladium- and nickel-catalysed carboiodination reactions afforded access to the cis and trans diastereomers of the iodo-dihydroisoquinolone products. Using these substrates, an extensive study investigating the reversibility of C–C bond formation using a simple palladium catalyst was undertaken. Herein we report a comprehensive investigation of reversible C–C bond formation using palladium catalysis employing diastereomeric neopentyl iodides as the starting point. It was shown that both diastereomers could be converted to a common product under identical catalytic conditions. A combination of experimental and computational studies were used to probe the operative mechanism. A variety of concepts key to understanding the process of reversible C–C bond formations were investigated, including the effect of electronic and steric parameters on the C–C bond-cleavage step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for β-carbon elimination.
Fig. 2: Initial results and proposed mechanism.
Fig. 3: Mechanistic studies probing alternative pathways.
Fig. 4: DFT analysis of the reaction.
Fig. 5: DFT analysis of the electronic and steric trends of the reaction.

Similar content being viewed by others

Data availability

The experimental data, as well as the characterization data for all of the compounds prepared in the course of these studies, are provided in the Supplementary Information. The crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under accession numbers: 2096025 (2a) and 2123639 (trans-1d) (see the X-ray crystallographic data in the Supplementary Information). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kotha, S. & Banerjee, S. Recent developments in the retro-Diels–Alder reaction. RSC Adv. 3, 7642–7666 (2013).

    Article  CAS  Google Scholar 

  2. Rickborn, B. The Retro-Diels–Alder Reaction Part II. Dienophiles with one or more heteroatom. Org. React. 53, 223–629 (2004).

    Google Scholar 

  3. Rickborn, B. The Retro-Diels–Alder Reaction. Part I. C–C dienophiles. Org. React. 52, 1–393 (2004).

    Google Scholar 

  4. Orlandi, M., Ceotto, M. & Benaglia, M. Kinetics versus thermodynamics in the proline catalyzed aldol reaction. Chem. Sci. 7, 5421–5427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cergol, K. M., Jensen, P., Turner, P. & Coster, M. J. Reversibility in the boron-mediated ketone–ketone aldol reaction. Chem. Commun. https://doi.org/10.1039/b617094c (2007).

  6. Zhang, J. et al. Kinetic study of Retro-Aldol condensation of glucose to glucolaldehyde with ammonium metatungstate as the catalyst. AIChE J 60, 3804–2813 (2014).

    Article  CAS  Google Scholar 

  7. Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis (University Science Books, 2010).

  8. Gómez-Gallego, M. & Sierra, M. A. Kinetic isotope effects in the study of organometallic reaction mechanisms. Chem. Rev. 111, 4857–4963 (2011).

    Article  PubMed  Google Scholar 

  9. Blum, O. & Milstein, D. Mechanism of a directly observed β-hydride elimination process of iridium alkoxo complexes. J. Am. Chem. Soc. 117, 4582–4594 (1995).

    Article  CAS  Google Scholar 

  10. Vela, J. et al. Reversible beta-hydrogen elimination of three-coordinate iron(II) alkyl complexes: mechanistic and thermodynamic studies. Organometallics 23, 5226–5239 (2004).

    Article  CAS  Google Scholar 

  11. Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reactions. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).

    Article  CAS  Google Scholar 

  12. Miura, M. & Satoh, T. Catalytic processes involving β-carbon elimination. Top. Organomet. Chem. 14, 1–20 (2005).

    Google Scholar 

  13. Dong, G. Topics in Current Chemistry: CC Bond Activation Vol. 346 (Springer, 2014).

  14. O’Reilly, M. E., Dutta, S. & Veige, A. S. β-Alkyl elimination: fundamental principles and some applications. Chem. Rev. 116, 8105–8145 (2016).

    Article  PubMed  Google Scholar 

  15. Ruhland, K. Transition-metal-mediated cleavage and activation of C-C single bonds. European J. Org. Chem. 2012, 2683–2706 (2012).

    Article  CAS  Google Scholar 

  16. Ye, J. et al. Remote C–H alkylation and C–C bond cleavage enabled by an in situ generated palladacycle. Nat. Chem. 9, 361–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. McDonald, T. R., Mills, L. R., West, M. S. & Rousseaux, S. A. L. Selective carbon–carbon bond cleavage of cyclopropanols. Chem. Rev. 121, 3–79 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Azizollahi, H. & García-López, J. A. Recent advances on synthetic methodology merging C–H functionalization and C–C cleavage. Molecules 25, 5900 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  19. Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Deng, R., Xi, J., Li, Q. & Gu, Z. Enantioselective carbon–carbon bond cleavage for biaryl atropisomers. Synthesis. Chem 5, 1834–1846 (2019).

    CAS  Google Scholar 

  21. Bunel, E., Burger, B. J. & Bercaw, J. E. Carbon–carbon bond activation via β-alkyl elimination. Reversible branching of 1,4-pentadienes catalyzed by scandocene hydride derivatives. J. Am. Chem. Soc. 110, 976–978 (1988).

    Article  CAS  Google Scholar 

  22. Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng, H. G., Chen, S., Chen, R. & Zhou, Q. Palladium(II)-initiated Catellani-type reactions. Angew. Chem. Int. Ed. 58, 5832–5844 (2019).

    Article  CAS  Google Scholar 

  24. Lutz, M. D. R. & Morandi, B. Metal-catalyzed carbon–carbon bond cleavage of unstrained alcohols. Chem. Rev. 121, 300–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Li, H. et al. Transformations of aryl ketones via ligand-promoted C–C bond activation. Angew. Chem. Int. Ed. 59, 14388–14393 (2020).

    Article  CAS  Google Scholar 

  26. Song, F., Gou, T., Wang, B. Q. & Shi, Z. J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, M. et al. Ligand-promoted alkynylation of aryl ketones: a practical tool for structural diversity in drugs and natural products. ACS Catal 11, 1758–1764 (2021).

    Article  Google Scholar 

  28. Zhao, P. & Hartwig, J. F. β-Aryl eliminations from Rh(I) iminyl complexes. J. Am. Chem. Soc. 127, 11618–11619 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, P., Incarvito, C. D. & Hartwig, J. F. Direct observation of β-aryl eliminations from Rh(I) alkoxides. J. Am. Chem. Soc. 128, 3124–3125 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Terao, Y., Wakui, H., Satoh, T., Miura, M. & Nomura, M. Palladium-catalyzed arylative carbon–carbon bond cleavage of α,α-disubstituted arylmethanols [11]. J. Am. Chem. Soc. 123, 10407–10408 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Z.-Y. et al. Arylketones as aryl donors in palladium-catalyzed Suzuki-Miyaura couplings. Org. Lett. 23, 8291–8295 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Newman, S. G. & Lautens, M. The role of reversible oxidative addition in selective palladium(0)-catalyzed intramolecular cross-couplings of polyhalogenated substrates: synthesis of brominated indoles. J. Am. Chem. Soc. 132, 11416–11417 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Marchese, A. D., Larin, E. M., Mirabi, B. & Lautens, M. Metal-catalyzed approaches toward the oxindole core. Acc. Chem. Res. 53, 1605–1619 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Jones, D. J., Lautens, M. & McGlacken, G. P. The emergence of Pd-mediated reversible oxidative addition in cross coupling, carbohalogenation and carbonylation reactions. Nat. Catal. 2, 843–851 (2019).

    Article  CAS  Google Scholar 

  35. Newman, S. G. & Lautens, M. Palladium-catalyzed carboiodination of alkenes: carbon–carbon bond formation with retention of reactive functionality. J. Am. Chem. Soc. 133, 1778–1780 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Marchese, A. D. et al. Nickel-catalyzed enantioselective carbamoyl iodination: a surrogate for carbamoyl iodides. ACS Catal. 10, 4780–4785 (2020).

    Article  CAS  Google Scholar 

  37. Marchese, A. D., Adrianov, T., Köllen, M. F., Mirabi, B. & Lautens, M. Synthesis of carbocyclic compounds via a nickel-catalyzed carboiodination reaction. ACS Catal. 11, 925–931 (2021).

    Article  CAS  Google Scholar 

  38. Marchese, A. D., Adrianov, T. & Lautens, M. Recent strategies for carbon–halogen bond formation using nickel. Angew. Chem. Int. Ed. 60, 16750–16762 (2021).

    Article  CAS  Google Scholar 

  39. Liu, H., Li, C., Qiu, D. & Tong, X. Palladium-catalyzed cycloisomerizations of (Z)-1-iodo-1,6-dienes: iodine atom transfer and mechanistic insight to alkyl iodide reductive elimination. J. Am. Chem. Soc. 133, 6187–6193 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Z. M. et al. Palladium/XuPhos-catalyzed enantioselective carboiodination of olefin-tethered aryl iodides. J. Am. Chem. Soc. 141, 8110–8115 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, Y. L. et al. Enantioselective cross-exchange between C–I and C–C σ bonds. Angew. Chem. Int. Ed. 58, 6747–6751 (2019).

    Article  CAS  Google Scholar 

  42. Petrone, D. A., Yoon, H., Weinstabl, H. & Lautens, M. Additive effects in the palladium-catalyzed carboiodination of chiral N-allyl carboxamides. Angew. Chem. Int. Ed. 53, 7908–7912 (2014).

    Article  CAS  Google Scholar 

  43. Yoon, H., Marchese, A. D. & Lautens, M. Carboiodination catalyzed by nickel. J. Am. Chem. Soc. 140, 10950–10954 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi, T. et al. Nickel-catalyzed intermolecular carboiodination of alkynes with aryl iodides. Chem. Commun. 54, 12750–12753 (2018).

    Article  CAS  Google Scholar 

  45. Marchese, A. D., Lind, F., Mahon, Á. E., Yoon, H. & Lautens, M. Forming benzylic iodides via a nickel catalyzed diastereoselective dearomative carboiodination reaction of indoles. Angew. Chem. Int. Ed. 58, 5095–5099 (2019).

    Article  CAS  Google Scholar 

  46. Marchese, A. D., Kersting, L. & Lautens, M. Diastereoselective nickel-catalyzed carboiodination generating six-membered nitrogen-based heterocycles. Org. Lett. 21, 7163–7168 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Lan, Y., Liu, P., Newman, S. G., Lautens, M. & Houk, K. N. Theoretical study of Pd(0)-catalyzed carbohalogenation of alkenes: mechanism and origins of reactivities and selectivities in alkyl halide reductive elimination from Pd(II) species. Chem. Sci. 3, 1987–1995 (2012).

    Article  CAS  Google Scholar 

  48. Yoon, H., Petrone, D. A. & Lautens, M. Diastereoselective palladium-catalyzed arylcyanation/heteroarylcyanation of enantioenriched N-allylcarboxamides. Org. Lett. 16, 6420–6423 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Jayanth, T. T., Zhang, L., Johnson, T. S. & Malinakova, H. C. Sequential Cu(I)/Pd(0)-catalyzed multicomponent coupling and annulation protocol for the synthesis of indenoisoquinolines. Org. Lett. 11, 815–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, Q., Fazio, A., Dai, G., Campo, M. A. & Larock, R. C. Pd-catalyzed alkyl to aryl migration and cyclization: an efficient synthesis of fused polycycles via multiple C–H activation. J. Am. Chem. Soc. 126, 7460–7461 (2004).

    Article  PubMed  Google Scholar 

  51. Piou, T., Bunescu, A., Wang, Q., Neuville, L. & Zhu, J. Palladium-catalyzed through-space C(sp3)–H and C(sp2)–H bond activation by 1,4-palladium migration: efficient synthesis of [3,4]-fused oxindoles. Angew. Chem. Int. Ed. 52, 12385–12389 (2013).

    Article  CAS  Google Scholar 

  52. Clemenceau, A., Thesmar, P., Gicquel, M., Le Flohic, A. & Baudoin, O. Direct synthesis of cyclopropanes from gem-dialkyl groups through double C–H activation. J. Am. Chem. Soc. 142, 15355–15361 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Terao, Y. et al. Palladium-catalyzed arylation of α,α-disubstituted arylmethanols via cleavage of a C–C or a C–H bond to give biaryls. J. Org. Chem. 68, 5236–5243 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Bour, J. R., Green, J. C., Winton, V. J. & Johnson, J. B. Steric and electronic effects influencing β-aryl elimination in the Pd-catalyzed carbon–carbon single bond activation of triarylmethanols. J. Org. Chem. 78, 1665–1669 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Toronto, the Natural Science and Engineering Research Council (NSERC), and Kennarshore Inc. for financial support. A.D.M. thanks NSERC for an NSERC Vanier fellowship. B.M. thanks the NSERC for a CGS D scholarship. Computational studies were enabled in part through support provided by Compute Ontario (www.computeontario.ca) and Compute Canada (www.computecanada.ca). We thank D. Burns, J. Sheng and K. Demmans (University of Toronto) for their assistance with NMR experiments. We thank I. Franzoni for fruitful discussions and their assistance with the DFT studies. We thank E. M. Larin and D. Armstrong for their helpful discussions about this work. We thank H. Yoon and D. Petrone for their insight on the palladium-catalysed carboiodination reaction. We thank A. Lough (University of Toronto) for obtaining the X-ray crystallographic data.

Author information

Authors and Affiliations

Authors

Contributions

A.D.M. and B.M. contributed equally to this work. A.D.M. and M.L. conceived the idea for this work. A.D.M. performed the experimental work for this the project, including the mechanistic studies, catalytic reactions, characterization and the majority of the substrate syntheses. B.M. was responsible for all of the DFT calculations and aided in the design of the mechanistic studies and synthesis of the substrates. C.E.J. aided in the synthesis of substrates and characterization. A.D.M, B.M, and M.L prepared the manuscript with feedback from all the authors.

Corresponding author

Correspondence to Mark Lautens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General considerations, general procedures 1 and 2, optimization and control studies, X-ray crystallographic data, computational details and results, energies and Cartesian coordinates, spectra.

Supplementary Data 1

Crystallographic data for compound trans-1d; CCDC no. 2123639.

Supplementary Data 2

Crystallographic data for compound 2a; CCDC no. 2096025.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchese, A.D., Mirabi, B., Johnson, C.E. et al. Reversible C–C bond formation using palladium catalysis. Nat. Chem. 14, 398–406 (2022). https://doi.org/10.1038/s41557-022-00898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00898-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing