Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A terminal neptunium(V)–mono(oxo) complex

Abstract

Neptunium was the first actinide element to be artificially synthesized, yet, compared with its more famous neighbours uranium and plutonium, is less conspicuously studied. Most neptunium chemistry involves the neptunyl di(oxo)-motif, and transuranic compounds with one metal–ligand multiple bond are rare, being found only in extended-structure oxide, fluoride or oxyhalide materials. These combinations stabilize the required high oxidation states, which are otherwise challenging to realize for transuranic ions. Here we report the synthesis, isolation and characterization of a stable molecular neptunium(V)–mono(oxo) triamidoamine complex. We describe a strong Np≡O triple bond with dominant 5f-orbital contributions and σu > πu energy ordering, akin to terminal uranium-nitrides and di(oxo)-actinyls, but not the uranium–mono(oxo) triple bonds or other actinide multiple bonds reported so far. This work demonstrates that molecular high-oxidation-state transuranic complexes with a single metal–ligand bond can be stabilized and studied in isolation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Previous molecular high-oxidation-state Np and Pu structural motifs of relevance to this study and synthesis of complexes [(TrenTIPS)NpIVCl] (1), [(TrenTIPS)NpIII] (2) and [(TrenTIPS)NpVO] (3) from NpIVCl4 and the ligand transfer reagent [(TrenTIPS)Li3] (TrenTIPS = {N(CH2CH2NSiiPr3)3}3−).
Fig. 2: Cyclic voltammogram of [(TrenTIPS)NpIVCl] (1) in THF (2 mM) versus the ferrocene +1/0 redox couple at varying scan rates.
Fig. 3: Molecular structures of crystalline [(TrenTIPS)NpIII] (2) and [(TrenTIPS)NpVO] (3).
Fig. 4: Variable-temperature magnetic data and modelled energy level diagrams for [(TrenTIPS)NpIVCl] (1), [(TrenTIPS)NpIII] (2) and [(TrenTIPS)NpVO] (3).
Fig. 5: Computed σu and πu energy gaps for [(TrenTIPS)NpIVCl] (1), [(TrenTIPS)NpIII] (2) and [(TrenTIPS)NpVO] (3) and NBO representations of the σ and two π bonds of the Np≡O triple bond in [(TrenTIPS)NpVO] (3).

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2055264 (2) and 2055265 (3). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data are presented in the main text and the Supplementary Information tables, and are also available from the corresponding authors on reasonable request.

References

  1. Ibers, J. Neglected neptunium. Nat. Chem. 2, 996–996 (2010).

    CAS  PubMed  Google Scholar 

  2. Nugent, W. A. & Mayer, J. M. Metal-Ligand Multiple Bonds (Wiley, 1988).

    Google Scholar 

  3. Hayton, T. W. Metal-ligand multiple bonding in uranium: structure and reactivity. Dalton Trans. 39, 1145–1158 (2010).

    CAS  PubMed  Google Scholar 

  4. Jones, M. B. & Gaunt, A. J. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem. Rev. 113, 1137–1198 (2013).

    CAS  PubMed  Google Scholar 

  5. Hayton, T. W. Recent developments in actinide-ligand multiple bonding. Chem. Commun. 49, 2956–2973 (2013).

    CAS  Google Scholar 

  6. La Pierre, H. S. & Meyer, K. Activation of small molecules by molecular uranium complexes. Prog. Inorg. Chem. 58, 303–415 (2014).

    Google Scholar 

  7. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015).

    CAS  Google Scholar 

  8. Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans. 2006, 2501–2516 (2006).

    Google Scholar 

  9. Kovács, A., Konings, R. J. M., Gibson, J. K., Infante, I. & Gagliardi, L. Quantum chemical calculations and experimental investigations of molecular actinide oxides. Chem. Rev. 115, 1725–1759 (2015).

    PubMed  Google Scholar 

  10. Brown, D., Reynolds, C. T. & Moseley, P. T. Crystal structure of bis(tetraethylammonium) oxopentachloroprotactinate(V). J. Chem. Soc. Dalton Trans. 1972, 857–859 (1972).

    Google Scholar 

  11. Le Naour, C. et al. First structural characterization of a protactinium(V) single oxo bond in aqueous media. Inorg. Chem. 44, 9542–9546 (2005).

    PubMed  Google Scholar 

  12. Ma, G., Ferguson, M. J. & Cavell, R. G. Actinide metals with multiple bonds to carbon: synthesis, characterization, and reactivity of U(IV) and Th(IV) bis(iminophosphorano)methandiide pincer carbene complexes. Inorg. Chem. 50, 6500–6508 (2011).

    CAS  PubMed  Google Scholar 

  13. Ren, W., Deng, X., Zi, G. & Fang, D.-C. The Th=C double bond: an experimental and computational study of thorium poly-carbene complexes. Dalton Trans. 40, 9662–9664 (2011).

    CAS  PubMed  Google Scholar 

  14. Ren, W., Zi, G., Fang, D.-C. & Walter, M. D. Thorium oxo and sulfido metallocenes: synthesis, structure, reactivity, and computational studies. J. Am. Chem. Soc. 133, 13183–13196 (2011).

    CAS  PubMed  Google Scholar 

  15. Bell, N., Maron, L. & Arnold, P. L. Thorium mono- and bis(imido) complexes made by reprotonation of cyclo-metalated amides. J. Am. Chem. Soc. 137, 10492–10495 (2015).

    CAS  PubMed  Google Scholar 

  16. Smiles, D. E., Wu, G., Kaltsoyannis, N. & Hayton, T. W. Thorium-ligand multiple bonds via reductive deprotection of a trityl group. Chem. Sci. 6, 3891–3899 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dau, P. D., Wilson, R. E. & Gibson, J. K. Elucidating protactinium hydrolysis: the relative stabilities of PaO2(H2O)+ and PaO(OH)2. Inorg. Chem. 54, 7474–7480 (2015).

    CAS  PubMed  Google Scholar 

  18. Smiles, D. W., Wu, G., Hrobárik, P. & Hayton, T. W. Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in [Th(En){N(SiMe3)2}3] (E = Se, Te; n = 1, 2) and their oxo-uranium(VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).

    CAS  PubMed  Google Scholar 

  19. Gregson, M. et al. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes. Nat. Commun. 8, 14137 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Synthesis, thermochemistry, bonding, and 13C NMR chemical shift analysis of a phosphorano-stabilized carbene of thorium. Organometallics 36, 4519–4524 (2017).

    CAS  Google Scholar 

  21. Rungthanaphatsophon, P. et al. Formation of methane versus benzene in the reactions of (C5Me5)2Th(CH3)2 with [CH3PPh3]X (X = Cl, Br, I) yielding thorium-carbene or thorium-ylide complexes. Angew. Chem. Int. Ed. 56, 12925–12929 (2017).

    CAS  Google Scholar 

  22. Morss, L. R. et al. (eds) The Chemistry of the Actinide and Transactinide Elements 3rd edn (Springer, 2006).

  23. Arnold, P. L., Dutkiewicz, M. S. & Walter, O. Organometallic neptunium chemistry. Chem. Rev. 117, 11460–11475 (2017).

    CAS  PubMed  Google Scholar 

  24. Gibson, J. K. Gas-phase transuranium organometallic chemistry: reactions of Np+, Pu+, NpO+ and PuO+ with alkenes. J. Am. Chem. Soc. 120, 2633–2640 (1998).

    CAS  Google Scholar 

  25. Gibson, J. K. Actinide gas-phase chemistry: reactions of An+ and AnO+ [An = Th, U, Np, Pu, Am] with nitriles and butylamine. Inorg. Chem. 38, 165–173 (1999).

    CAS  Google Scholar 

  26. Gibson, J. K. et al. Gas-phase reactions of hydrocarbons with An+ and AnO+ (An = Th, Pa, U, Np, Pu, Am, Cm): the active role of 5f electrons in organoprotactinium chemistry. Organometallics 26, 3947–3956 (2007).

    CAS  Google Scholar 

  27. Marçalo, J. & Gibson, J. K. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium. J. Phys. Chem. A 113, 12599–12606 (2009).

    PubMed  Google Scholar 

  28. Infante, I. et al. Ionization energies for the actinide mono- and dioxides series, from Th to Cm: theory versus experiment. J. Phys. Chem. A 114, 6007–6015 (2010).

    CAS  PubMed  Google Scholar 

  29. Pereira, C. C. L., Marsden, C. J., Marçalo, J. & Gibson, J. K. Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An = Ac, Th, Pa, U, Np, Pu, Am and Cm). Phys. Chem. Chem. Phys. 13, 12940–12958 (2011).

    CAS  PubMed  Google Scholar 

  30. Bagnall, K. W. & Laidler, J. B. Neptunium chloro-complexes. J. Chem. Soc. A 1966, 516–520 (1966).

    Google Scholar 

  31. Bagnall, K. W., Brown, D. & Easey, J. F. Neptunium(V) and (VI) oxyfluorides. J. Chem. Soc. A 1968, 2223–2227 (1968).

    Google Scholar 

  32. Forbes, T. Z., Burns, P. C., Skanthakumar, S. & Soderholm, L. Synthesis, structure and magnetism of Np2O5. J. Am. Chem. Soc. 129, 2760–2761 (2007).

    CAS  PubMed  Google Scholar 

  33. Eller, P. G., Malm, J. G., Swanson, B. I. & Morss, L. R. Reactions of hexafluorides of uranium, neptunium and plutonium with nitrogen oxides and oxyfluorides. Synthesis and characterization of (NO)[NpF6] and (NO)[PuF6]. J. Alloys Comp. 269, 50–56 (1998).

    CAS  Google Scholar 

  34. Kiselev, Y. M. et al. On existence and properties of plutonium(VIII) derivatives. Radiochim. Acta 102, 227–237 (2014).

    CAS  Google Scholar 

  35. Charushnikova, I. A., Krot, N. N., Grigor’ev, M. S. & Makerenkov, V. I. New data on Np(VII) compounds with Co(NH3)63+. Crystal structure of [Co(NH3)6]3[NpO4(OH)2]3·4H2O and refinement of the structure of [Co(NH3)6][NpO4(OH)2]·2H2O. Radiochemistry 59, 124–133 (2017).

    CAS  Google Scholar 

  36. Brown, J. L. et al. A linear trans-bis(imido) neptunium(V) actinyl analog: NpV(NDipp)2(tBu2bipy)2Cl (Dipp = 2,6-iPr2C6H3). J. Am. Chem. Soc. 137, 9583–9586 (2015).

    CAS  PubMed  Google Scholar 

  37. Samulski, E. T. & Karraker, D. G. Some ethoxide compounds of neptunium. J. Inorg. Nucl. Chem. 29, 993–996 (1967).

    CAS  Google Scholar 

  38. Brown, J. L. et al. Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold. Chem. Commun. 52, 5428–5431 (2016).

    CAS  Google Scholar 

  39. Staun, S. L. et al. Expanding the nonaqueous chemistry of neptunium: synthesis and structural characterization of [Np(NR2)3Cl], [Np(NR2)3Cl], and [Np{N(R)(SiMe2CH2)}2(NR2)] (R = SiMe3). Inorg. Chem. 60, 2740–2748 (2021).

    CAS  PubMed  Google Scholar 

  40. Sonnenberger, D. C. & Gaudiello, J. G. Synthesis and cyclic voltammetric study of bis(pentamethylcyclopentadienyl)neptunium dichloride. J. Less Common Metals 126, 411–414 (1986).

    CAS  Google Scholar 

  41. Sonnenberger, D. C. & Gaudiello, J. G. Cyclic voltammetric study of organoactinide compounds of uranium(IV) and neptunium(IV). Ligand effects on the M(IV)/M(III) couple. Inorg. Chem. 27, 2747–2748 (1988).

    CAS  Google Scholar 

  42. Klamm, B. E. et al. Exploring the oxidation states of neptunium with Schiff base coordination complexes. Inorg. Chem. 59, 18035–18047 (2020).

    CAS  PubMed  Google Scholar 

  43. King, D. M. et al. Synthesis and structure of a terminal uranium nitride complex. Science 337, 717–720 (2012).

    CAS  PubMed  Google Scholar 

  44. King, D. M. et al. Isolation and characterization of a uranium(VI)–nitride triple bond. Nat. Chem. 5, 482–488 (2013).

    CAS  PubMed  Google Scholar 

  45. King, D. M. et al. Single-molecule magnetism in a single-ion triamidoamine uranium(V) terminal mono-oxo complex. Angew. Chem. Int. Ed. 52, 4921–4924 (2013).

    CAS  Google Scholar 

  46. Fortier, S., Brown, J. L., Kaltsoyannis, N., Wu, G. & Hayton, T. W. Synthesis, molecular and electronic structure of UV(O)[N(SiMe3)2]3. Inorg. Chem. 51, 1625–1633 (2012).

    CAS  PubMed  Google Scholar 

  47. Pyykkö, P. Additive covalent radii for single-, double- and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    PubMed  Google Scholar 

  48. Wang, S. et al. Neptunium diverges sharply from uranium and plutonium in crystalline borate matrixes: insights into the complex behavior of the early actinides relevant to nuclear waste storage. Angew. Chem. Int. Ed. 49, 1263–1266 (2010).

    CAS  Google Scholar 

  49. Tatsumi, K. & Hoffmann, R. Bent cis d0 MoO22+ vs. linear trans d0f0 UO22+: a significant role for nonvalence 6p orbitals in uranyl. Inorg. Chem. 19, 2656–2658 (1980).

    CAS  Google Scholar 

  50. Denning, R. G. Electronic structure and bonding in actinyl ions. Struct. Bonding 79, 215–276 (1992).

    CAS  Google Scholar 

  51. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111, 4125–4143 (2007).

    CAS  PubMed  Google Scholar 

  52. La Pierre, H. S. & Meyer, K. Uranium-ligand multiple bonding in uranyl analogues, [L=U=L]n+, and the inverse trans influence. Inorg. Chem. 52, 529–539 (2013).

    PubMed  Google Scholar 

  53. Lewis, A. J., Carroll, P. J. & Schelter, E. J. Stable uranium(VI) methyl and acetylide complexes and the elucidation of an inverse trans influence ligand series. J. Am. Chem. Soc. 135, 13185–13192 (2013).

    CAS  PubMed  Google Scholar 

  54. Zi, G. et al. Preparation and reactions of base-free bis(1,2,4-tri-tert-butylcyclopentadienyl)uranium oxide, Cp'2UO. Organometallics 24, 4251–4264 (2005).

    CAS  Google Scholar 

  55. Vallet, V., Wahlgren, U. & Grenthe, I. Probing the nature of chemical bonding in uranyl(VI) complexes with quantum chemical methods. J. Phys. Chem. A 116, 12373–12380 (2012).

    CAS  PubMed  Google Scholar 

  56. Castro-Rodríguez, I. & Meyer, K. Small molecule activation at uranium coordination complexes: control of reactivity via molecular architecture. Chem. Commun. 2006, 1353–1368 (2006).

    Google Scholar 

  57. Kindra, D. R. & Evans, W. J. Magnetic susceptibility of uranium complexes. Chem. Rev. 114, 8865–8882 (2014).

    CAS  PubMed  Google Scholar 

  58. Seed, J. A. et al. Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states. Chem 7, 1666–1680 (2021).

    CAS  Google Scholar 

  59. King, D. M. et al. Synthesis and characterization of an f-block terminal parent imido [U=NH] complex: a masked uranium(IV) nitride. J. Am. Chem. Soc. 136, 5619–5622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Coutinho, J. T. et al. Spectroscopic determination of the electronic structure of a uranium single-ion magnet. Chem. Eur. J. 25, 1758–1766 (2019).

    CAS  PubMed  Google Scholar 

  61. Karraker, D. G. Magnetic susceptibilities of the tetravalent plutonium ion in octahedral compounds. Inorg. Chem. 10, 1564–1566 (1971).

    CAS  Google Scholar 

  62. La Pierre, H. S., Scheurer, A., Heinemann, F. W., Hieringer, W. & Meyer, K. Synthesis and characterization of a uranium(II) monoarene complex supported by δ backbonding. Angew. Chem. Int. Ed. 53, 7158–7162 (2014).

    Google Scholar 

  63. Windorff, C. J. et al. Expanding the chemistry of molecular U2+ complexes: synthesis, characterization, and reactivity of the {[C5H3(SiMe3)2]3U} anion. Chem. Eur. J. 22, 772–782 (2016).

    CAS  PubMed  Google Scholar 

  64. Billow, B. S. et al. Synthesis and characterization of a neutral U(II) arene sandwich complex. J. Am. Chem. Soc. 140, 17369–17373 (2018).

    CAS  PubMed  Google Scholar 

  65. Apostolidis, C. et al. Tris-{hydridotris(1-pyrazolyl)borato}actinide complexes: synthesis, spectroscopy, crystal structure, bonding properties and magnetic behaviour. Chem. Eur. J. 26, 11293–11306 (2020).

    CAS  PubMed  Google Scholar 

  66. Dutkiewicz, M. S. et al. Organometallic neptunium(III) complexes. Nat. Chem. 8, 797–802 (2016).

    CAS  PubMed  Google Scholar 

  67. Aquilante, F. et al. MOLCAS 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 37, 506–541 (2016).

    CAS  PubMed  Google Scholar 

  68. Te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Google Scholar 

  69. Du, J. et al. Thorium-nitrogen multiple bonds provide evidence for pushing-from-below for early actinides. Nat. Commun. 10, 4203 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Kaltsoyannis, N. Computational study of analogues of the uranyl ion containing the −N=U=N− unit: density functional theory calculations on UO22+, UON+, UN2, UO(NPH3)24+, [UCl4{NPR3}2] (R = H, Me), and [UOCl4{NP(C6H5)3}]. Inorg. Chem. 39, 6009–6017 (2000).

    CAS  PubMed  Google Scholar 

  71. Lu, E. et al. Emergence of the structure-directing role of f-orbital overlap-driven covalency. Nat. Commun. 10, 634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lewis, A. J., Carroll, P. J. & Schelter, E. J. Reductive cleavage of nitrite to form terminal uranium mono-oxo complexes. J. Am. Chem. Soc. 135, 511–518 (2013).

    CAS  PubMed  Google Scholar 

  73. Bader, R. F. W., Slee, T. S., Cremer, D. & Kraka, E. Description of conjugation and hyperconjugation in terms of electron distributions. J. Am. Chem. Soc. 105, 5061–5068 (1983).

    CAS  Google Scholar 

  74. Strittmatter, R. J. & Bursten, B. E. Bonding in tris(η5-cyclopentadienyl) actinide complexes. 5. A comparison of the bonding in Np, Pu, and transplutonium compounds with that in lanthanide compounds and a transition-metal analogue. J. Am. Chem. Soc. 113, 552–559 (1991).

    CAS  Google Scholar 

  75. Pepper, M. & Bursten, B. E. The electronic structure of actinide-containing molecules: a challenge to applied quantum chemistry. Chem. Rev. 91, 719–741 (1991).

    CAS  Google Scholar 

  76. Wu, Q.-Y., Wang, C.-Z., Lan, J.-H., Chai, Z.-F. & Shi, W.-Q. Electronic structures and bonding of the actinide halides An(TrenTIPS)X (An = Th–Pu; X = F–I): a theoretical perspective. Dalton Trans. 49, 15895–15902 (2020).

    CAS  PubMed  Google Scholar 

  77. Tassell, M. J. & Kaltsoyannis, N. Covalency in AnCp4 (An = Th–Cm): a comparison of molecular orbital, natural population and atoms-in-molecules analyses. Dalton Trans. 39, 6719–6725 (2010).

    CAS  PubMed  Google Scholar 

  78. Walensky, J. R., Martin, R. L., Ziller, J. W. & Evans, W. J. Importance of energy level matching for bonding in Th3+-Am3+ actinide metallocene amidinates, (C5Me5)2[iPrNC(Me)NiPr]An. Inorg. Chem. 49, 10007–10012 (2010).

    CAS  PubMed  Google Scholar 

  79. Kirker, I. & Kaltsoyannis, N. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th–Cm; Cp = C5H5). Dalton Trans. 40, 124–131 (2011).

    CAS  PubMed  Google Scholar 

  80. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    CAS  Google Scholar 

  81. Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).

    CAS  PubMed  Google Scholar 

  82. Bacha, R. U. S., Bi, Y.-T., Xuan, L.-C. & Pan, Q.-J. Inverse trans influence in low-valence actinide-group 10 metal complexes of phosphinoaryl oxides: a theoretical study via tuning metals and donor ligands. Inorg. Chem. 58, 10028–10037 (2019).

    CAS  PubMed  Google Scholar 

  83. Hu, S.-X., Zhang, P., Lu, E. & Zhang, P. Decisive role of 5f-orbital covalence in the structure and stability of pentavalent transuranic oxo [M6O8] clusters. Inorg. Chem. 59, 18068–18077 (2020).

    CAS  PubMed  Google Scholar 

  84. Behrle, A. C., Myers, A. J., Kerridge, A. & Walensky, J. R. Coordination chemistry and QTAIM analysis of homoleptic dithiocarbamate complexes, M(S2CNiPr2)4 (M = Ti, Zr, Hf, Th, U, Np). Inorg. Chem. 57, 10518–10524 (2018).

    CAS  PubMed  Google Scholar 

  85. Kloditz, R. et al. Series of tetravalent actinide amidinates: structure determination and bonding analysis. Inorg. Chem. 59, 15670–15680 (2020).

    CAS  PubMed  Google Scholar 

  86. Kloditz, R. et al. Comprehensive bonding analysis of tetravalent f-element complexes of the type [M(salen)2]. Inorg. Chem. 60, 2514–2525 (2021).

    CAS  PubMed  Google Scholar 

  87. Jin, G. B., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. Neptunium thiophosphate chemistry: intermediate behavior between uranium and plutonium. Inorg. Chem. 50, 9688–9695 (2011).

    CAS  PubMed  Google Scholar 

  88. Bruker APEX2, SAINT-Plus, SADABS (Bruker AXS Inc., 2007); https://www.bruker.com/en/products-and-solutions/diffractometers-and-scattering-systems/single-crystal-x-ray-diffractometers/sc-xrd-software.html

  89. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).

    Google Scholar 

  90. Soltek, R. & Huttner, G. Winray-32 (Univ. Heidelberg, 1998).

  91. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45, 849–854 (2012).

    CAS  Google Scholar 

  92. Persistence of Vision (TM) Raytracer (Persistence of Vision Pty Ltd); https://www.povray.org/

  93. Speldrich, M., Leusen, Van & Kögerler, J. P. CONDON 3.0: an updated software package for magnetochemical analysis—all the way to polynuclear actinide complexes. J. Comput. Chem. 39, 2133–2145 (2018).

    CAS  PubMed  Google Scholar 

  94. Popa, K. et al. A low-temperature synthesis method for AnO2 nanocrystals (An = Th, U, Np and Pu) and associate solid solutions. CrystEngComm 20, 4614–4622 (2018).

    CAS  Google Scholar 

  95. Laubereau, P. Präparative und radiochemische Synthesen von Cyclopentadienylkomplexen der Actiniden und des Promethiums, sowie Untersuchungen zum Spaltprodukteinbau in Aromaten-Fängerkomplexe (Technischen Hochschule München, 1966).

  96. Thomson, R. K., Scott, B. L., Morris, D. E. & Kiplinger, J. L. Synthesis, structure, spectroscopy and redox energetics of a series of uranium(IV) mixed-ligand metallocene complexes. C. R. Chim. 13, 790–802 (2010).

    CAS  Google Scholar 

  97. LaHalle, M. P., Krupa, J. C., Guillaumont, R. & Rizzoli, C. Optical spectroscopy of Np4+ (5f3) ion diluted in ThSiO4 and ThO2 crystalline hosts. J. Less Common Met. 122, 65–73 (1986).

    CAS  Google Scholar 

  98. Carnall, W. T. A systematic analysis of the spectra of trivalent actinide chlorides in D3h site symmetry. J. Chem. Phys. 96, 8713–8726 (1992).

    CAS  Google Scholar 

  99. Freeman, A. J. & Keller, C. (eds) Handbook on the Physics and Chemistry of the Actinides (North Holland, 1984).

  100. Fonseca Guerra, A. C., Snijders, J. G., Te Velde, G. & Baerends, E. J. Towards an order-N DFT method. Theor. Chem. Acc. 99, 391–403 (1998).

    Google Scholar 

  101. Van Lenthe, E., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993).

    Google Scholar 

  102. Van Lenthe, E., Baerends, E. J. & Snijders, J. G. Relativistic total energy using regular approximations. J. Chem. Phys. 101, 9783–9792 (1994).

    Google Scholar 

  103. Van Lenthe, E., Ehlers, A. E. & Baerends, E. J. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 110, 8943–8953 (1999).

    Google Scholar 

  104. Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    CAS  Google Scholar 

  105. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 38, 3098–3100 (1988).

    CAS  Google Scholar 

  106. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986).

    CAS  Google Scholar 

  107. Glendening, E. D. et al. NBO 5.0 (Theoretical Chemistry Institute, 2001); http://www.chem.wisc.edu/~nbo5

  108. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  109. Bader, R. F. W. A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998).

    CAS  Google Scholar 

  110. Ortiz Alba, J. C. & Jané, C. B. Xaim (Universitat Rovira i Virgili); http://www.quimica.urv.es/XAIM

  111. Portmann, S. & Luthi, H. P. MOLEKEL: an interactive molecular graphics tool. Chimia 54, 766–770 (2000).

    CAS  Google Scholar 

  112. Karlström, G. et al. MOLCAS: a program package for computational chemistry. Comput. Mater. Sci. 28, 222–239 (2003).

    Google Scholar 

  113. Roos, B. O. in Advances in Chemical Physics, Ab Initio Methods in Quantum Chemistry – II (ed. Lawley, K. P.) 399–446 (Wiley, 1987).

  114. Andersson, K., Malmqvist, P.-Å., Roos, B. O., Sadlej, A. & Wolinski, K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94, 5483–5488 (1990).

    CAS  Google Scholar 

  115. Andersson, K., Malmqvist, P.-Å. & Roos, B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992).

    CAS  Google Scholar 

  116. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, 2010).

  117. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  118. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Google Scholar 

  119. Moritz, A., Cao, X. & Dolg, M. Quasirelativistic energy-consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 117, 473–481 (2007).

    CAS  Google Scholar 

  120. Roos, B. O. & Malmqvist, P.-Å. Relativistic quantum chemistry: the multiconfigurational approach. Phys. Chem. Chem. Phys. 6, 2919–2927 (2004).

    CAS  Google Scholar 

  121. Douglas, N. & Kroll, N. M. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 82, 89–155 (1974).

    CAS  Google Scholar 

  122. Hess, B. A. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33, 3742–3748 (1986).

    CAS  Google Scholar 

  123. Roos, B. O., Lindh, R., Malmqvist, P.-Å., Veryazov, V. & Widmark, P.-O. New relativistic ANO basis sets for actinide atoms. Chem. Phys. Lett. 409, 295–299 (2005).

    CAS  Google Scholar 

  124. Widmark, P.-O., Malmqvist, P.-Å. & Roos, B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 77, 291–306 (1990).

    CAS  Google Scholar 

  125. Roos, B. O., Lindh, R., Malmqvist, P.-Å., Veryazov, V. & Widmark, P.-O. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A 108, 2851–2858 (2004).

    CAS  Google Scholar 

  126. Spivak, M., Vogiatzis, K. D., Cramer, C. J., De Graaf, C. & Gagliardi, L. Quantum chemical characterization of single molecule magnets based on uranium. J. Phys. Chem. A 121, 1726–1733 (2017).

    CAS  PubMed  Google Scholar 

  127. Gaggioli, C. A. & Gagliardi, L. Theoretical investigation of plutonium-based single-molecule magnets. Inorg. Chem. 57, 8098–8105 (2018).

    CAS  PubMed  Google Scholar 

  128. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyser. J. Comput. Chem. 5, 580–592 (2012).

    Google Scholar 

Download references

Acknowledgements

M.P. thanks J. Bendix (University of Copenhagen) for stimulating scientific discussions. Experimental work by M.S.D. was supported by the ActUsLab programme (AUL-2017-20-206) under contract with the European Commission. This work has been partially supported by the ENEN+ project, which has received funding from the Euratom research and training Work Programme 2016–2017–1 #755576 (M.S.D., O.W. and S.T.L.). Funding and support from the ENEN+ project for mobility support (A-9514681062; M.S.D.), the UK EPSRC (EP/T011289/1 and EP/M027015/1; S.T.L.), EU ERC (GoG612724; S.T.L.), COST Action CM1006 (S.T.L.), US DOE-BES Heavy Element Chemistry Program at Los Alamos National Laboratory (LANL; DE-AC52-06NA25396; C.A.P.G. and A.J.G.), LANL Laboratory Directed Research and Development program for a Distinguished J. R. Oppenheimer Postdoctoral Fellowship (LANL-LDRD 20180703PRD1; C.A.P.G.) and The University of Manchester (M.S.D., A.J.W., S.T.L.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.S.D. planned the experiments, synthesized the complexes and acquired and interpreted their characterization data. C.A.P.G. and A.J.G. prepared compounds for electrochemical experiments and performed, analysed and interpreted the electrochemical experiments. M.P., J.-C.G., E.C. and R.C. acquired, analysed, modelled and interpreted the magnetic data. A.K. conducted the multireference calculations. A.J.W. and O.W. collected and refined the crystallographic data. S.T.L. conducted the single-reference calculations. O.W. and S.T.L. conceived the research idea, coordinated the research, analysed and interpreted all the data, and wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Olaf Walter or Stephen T. Liddle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental and theoretical details, Supplementary Figs. 1–32 and Tables 1–8.

Supplementary Data 1

Final coordinates and energy from B3LYP calculations on NpSi3C6N4OH21.

Supplementary Data 2

Final coordinates and energy from B3LYP calculations on 3.

Supplementary Data 3

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 (all-electron).

Supplementary Data 4

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 (5d frozen core).

Supplementary Data 5

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 (6p frozen core).

Supplementary Data 6

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 with Np–O distance set to 1.84 Å.

Supplementary Data 7

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 with Np–O distance set to 1.85 Å.

Supplementary Data 8

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 with Np–O distance set to 1.86 Å.

Supplementary Data 9

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 with Np–O distance set to 1.87 Å.

Supplementary Data 10

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 with Np–O distance set to 1.88 Å.

Supplementary Data 11

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 with Np–O distance set to 1.89 Å.

Supplementary Data 12

Final coordinates and energy from a DFT single-point energy calculation on geometry-optimized 3 with Np–O distance set to 1.90 Å

Supplementary Data 13

Crystallographic information file (CIF) for 2, CCDC 2055264.

Supplementary Data 14

Crystallographic information file (CIF) for 3, CCDC 2055265.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dutkiewicz, M.S., Goodwin, C.A.P., Perfetti, M. et al. A terminal neptunium(V)–mono(oxo) complex. Nat. Chem. 14, 342–349 (2022). https://doi.org/10.1038/s41557-021-00858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00858-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing