Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination

Abstract

Threose nucleic acid has been considered a potential evolutionary progenitor of RNA because of its chemical simplicity, base pairing properties and capacity for higher-order functions such as folding and specific ligand binding. Here we report the in vitro selection of RNA-cleaving threose nucleic acid enzymes. One such enzyme, Tz1, catalyses a site-specific RNA-cleavage reaction with an observed pseudo first-order rate constant (kobs) of 0.016 min−1. The catalytic activity of Tz1 is maximal at 8 mM Mg2+ and remains relatively constant from pH 5.3 to 9.0. Tz1 preferentially cleaves a mutant epidermal growth factor receptor RNA substrate with a single point substitution, while leaving the wild-type intact. We demonstrate that Tz1 mediates selective gene silencing of the mutant epidermal growth factor receptor in eukaryotic cells. The identification of catalytic threose nucleic acids provides further experimental support for threose nucleic acid as an ancestral genetic and functional material. The demonstration of Tz1 mediating selective knockdown of intracellular RNA suggests that functional threose nucleic acids could be developed for future biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TNA enzymes capable of catalysing RNA-cleavage reactions.
Fig. 2: Biochemical characterization of RNA-cleaving TNA enzyme Tz1.
Fig. 3: Tz1 preferentially cleaves a mutant EGFR mRNA sequence with a single point mutation.
Fig. 4: Selective cleavage of EGFR T790M mRNA and downregulation of protein expression by Tz1.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Full experimental details and data supporting the findings of this study are available within the article and its Supplementary Information, as well as the source data files.

References

  1. Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  2. Inoue, T. & Orgel, L. A nonenzymatic RNA polymerase model. Science 219, 859–862 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284, 2118–2124 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Adamala, K., Engelhart, A. E. & Szostak, J. W. Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension. J. Am. Chem. Soc. 137, 483–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, J. et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60–66 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schoening, K. U. et al. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′→2′) oligonucleotide system. Science 290, 1347–1351 (2000).

    Article  Google Scholar 

  7. Orgel, L. A simpler nucleic acid. Science 290, 1306–1307 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Marc et al. The structure of a TNA–TNA complex in solution: NMR study of the octamer duplex derived from alpha-(l)-threofuranosyl-(3′-2′)-CGAATTCG. J. Am. Chem. Soc. 130, 15105–15115 (2008).

    Article  Google Scholar 

  9. Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Herdewijn, P. TNA as a potential alternative to natural nucleic acids. Angew. Chem. Int. Ed. 40, 2249–2251 (2001).

    Article  CAS  Google Scholar 

  11. Pizzarello, S. & Weber, A. L. Prebiotic amino acids as asymmetric catalysts. Science 303, 1151 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Weber, A. L. & Pizzarello, S. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc. Natl Acad. Sci. USA 103, 12713–12717 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burroughs, L. et al. Efficient asymmetric organocatalytic formation of erythrose and threose under aqueous conditions. Chem. Commun. 46, 4776–4778 (2010).

    Article  CAS  Google Scholar 

  14. Kim, H. J. et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am. Chem. Soc. 133, 9457–9468 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Burroughs, L. et al. Asymmetric organocatalytic formation of protected and unprotected tetroses under potentially prebiotic conditions. Org. Biomol. Chem. 10, 1565–1570 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. McCaffrey, V. P., Zellner, N. E., Waun, C. M., Bennett, E. R. & Earl, E. K. Reactivity and survivability of glycolaldehyde in simulated meteorite impact experiments. Orig. Life Evol. Biosph. 44, 29–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Hawkins, K., Patterson, A. K., Clarke, P. A. & Smith, D. K. Catalytic gels for a prebiotically relevant asymmetric aldol reaction in water: from organocatalyst design to hydrogel discovery and back again. J. Am. Chem. Soc. 142, 4379–4389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooper, G. et al. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879–883 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zellner, N. E. B., McCaffrey, V. P. & Butler, J. H. E. Cometary glycolaldehyde as a source of pre-RNA molecules. Astrobiology 20, 1377–1388 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Becker, S. et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352, 833–836 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H. J. & Benner, S. A. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl Acad. Sci. USA 114, 11315–11320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colville, B. W. F. & Powner, M. W. Selective prebiotic synthesis of α-threofuranosyl cytidine by photochemical anomerization. Angew. Chem. Int. Ed. 60, 10526–10530 (2021).

    Article  CAS  Google Scholar 

  23. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taylor, A. I. et al. Catalysts from synthetic genetic polymers. Nature 518, 427–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Alves Ferreira-Bravo, I., Cozens, C., Holliger, P. & DeStefano, J. J. Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res. 43, 9587–9599 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Wang, Y., Ngor, A. K., Nikoomanzar, A. & Chaput, J. C. Evolution of a general RNA-cleaving FANA enzyme. Nat. Commun. 9, 5067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rose, K. M. et al. Selection of 2′-deoxy-2′-fluoroarabino nucleic acid (FANA) aptamers that bind HIV-1 integrase with picomolar affinity. ACS Chem. Biol. 14, 2166–2175 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Eremeeva, E. et al. Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor. Nucleic Acids Res. 47, 4927–4939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sefah, K. et al. In vitro selection with artificial expanded genetic information systems. Proc. Natl Acad. Sci. USA 111, 1449–1454 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, L. et al. Evolution of functional six-nucleotide DNA. J. Am. Chem. Soc. 137, 6734–6737 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kimoto, M., Yamashige, R., Matsunaga, K., Yokoyama, S. & Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Arangundy-Franklin, S. et al. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat. Chem. 11, 533–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mei, H. et al. Synthesis and evolution of a threose nucleic acid aptamer bearing 7-deaza-7-substituted guanosine residues. J. Am. Chem. Soc. 140, 5706–5713 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Rangel, A. E., Zhe, C., Ayele, T. M. & Heemstra, J. M. In vitro selection of an XNA aptamer capable of small-molecule recognition. Nucleic Acids Res. 46, 8057–8068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunn, M. R., McCloskey, C. M., Buckley, P., Rhea, K. & Chaput, J. C. Generating biologically stable TNA aptamers that function with high affinity and thermal stability. J. Am. Chem. Soc. 142, 7721–7724 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, L. & Chaput, J. C. In vitro selection of an ATP-binding TNA aptamer. Molecules 25, E4194 (2020).

    Article  PubMed  Google Scholar 

  40. Li, X., Li, Z. & Yu, H. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy. Chem. Commun. 56, 14653–14656 (2020).

    Article  CAS  Google Scholar 

  41. Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Y. et al. A threose nucleic acid enzyme with RNA ligase activity. J. Am. Chem. Soc. 143, 8154–8163 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, X., Li, N. & Ellington, A. D. Ribozyme catalysis of metabolism in the RNA world. Chem. Biodivers. 4, 633–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Culbertson, M. C. et al. Evaluating TNA stability under simulated physiological conditions. Bioorg. Med. Chem. Lett. 26, 2418–2421 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Chaput, J. C., Yu, H. & Zhang, S. The emerging world of synthetic genetics. Chem. Biol. 19, 1360–1371 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).

    Article  CAS  Google Scholar 

  47. Liu, L. S. et al. α-l-threose nucleic acids as biocompatible antisense oligonucleotides for suppressing gene expression in living cells. ACS Appl. Mater. Interfaces 10, 9736–9743 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, F. et al. Synthetic α‑l‑threose nucleic acids targeting BcL‑2 show gene silencing and in vivo antitumor activity for cancer therapy. ACS Appl. Mater. Interfaces 11, 38510–38518 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Lu, X. H. et al. Efficient construction of a stable linear gene based on a TNA loop modified primer pair for gene delivery. Chem. Commun. 56, 9894–9897 (2020).

    Article  CAS  Google Scholar 

  50. Dunn, M. R., Otto, C., Fenton, K. E. & Chaput, J. C. Improving polymerase activity with unnatural substrates by sampling mutations in homologous protein architectures. ACS Chem. Biol. 11, 1210–1219 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilkinson, K. A., Merino, E. J. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 1, 1610–1616 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Homan, P. J. et al. Single-molecule correlated chemical probing of RNA. Proc. Natl Acad. Sci. USA 111, 13858–13863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mortimer, S. A. & Weeks, K. M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 129, 4144–4145 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu, H., Zhang, S., Dunn, M. R. & Chaput, J. C. An efficient and faithful in vitro replication system for threose nucleic acid. J. Am. Chem. Soc. 135, 3583–3591 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Ciardiello, F. & Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 358, 1160–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Horning, D. P., Bala, S., Chaput, J. C. & Joyce, G. F. RNA-catalyzed polymerization of deoxyribose, threose, and arabinose nucleic acids. ACS Synth. Biol. 8, 955–961 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heuberger, B. D. & Switzer, C. Nonenzymatic oligomerization of RNA by TNA templates. Org. Lett. 8, 5809–5811 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Schlosser, K. & Li, Y. Tracing sequence diversity change of RNA-cleaving deoxyribozymes under increasing selection pressure during in vitro selection. Biochemistry 43, 9695–9707 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Schlosser, K. & Li, Y. Diverse evolutionary trajectories characterize a community of RNA-cleaving deoxyribozymes: a case study into the population dynamics of in vitro selection. J. Mol. Evol. 61, 192–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Dunn, M. R. & Chaput, J. C. Reverse transcription of threose nucleic acid by a naturally occurring DNA polymerase. ChemBioChem 17, 1804–1808 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Saran, R. & Liu, J. A silver DNAzyme. Anal. Chem. 88, 4014–4020 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Robertson, M. P. & Ellington, A. D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol. 17, 62–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Huang, P. J. & Liu, J. An ultrasensitive light-up Cu2+ biosensor using a new DNAzyme cleaving a phosphorothioate-modified substrate. Anal. Chem. 88, 3341–3347 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Dunn, M. R. et al. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription. J. Am. Chem. Soc. 137, 4014–4017 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Rogers, J. & Joyce, G. F. A ribozyme that lacks cytidine. Nature 402, 323–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Rogers, J. & Joyce, G. F. The effect of cytidine on the structure and function of an RNA ligase ribozyme. RNA 7, 395–404 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Canny, M. D. et al. Fast cleavage kinetics of a natural hammerhead ribozyme. J. Am. Chem. Soc. 126, 10848–10849 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Santoro, S. W. & Joyce, G. F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330–13342 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Cepeda-Plaza, M., McGhee, C. E. & Lu, Y. Evidence of a general acid–base catalysis mechanism in the 8–17 DNAzyme. Biochemistry 57, 1517–1522 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Collins, R. A. & Olive, J. E. Reaction conditions and kinetics of self-cleavage of a ribozyme derived from Neurospora VS RNA. Biochemistry 32, 2795–2799 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Jayasena, V. K. & Gold, L. In vitro selection of self-cleaving RNAs with a low pH optimum. Proc. Natl Acad. Sci. USA 94, 10612–10617 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, Z., Mei, S. H., Brennan, J. D. & Li, Y. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J. Am. Chem. Soc. 125, 7539–7545 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Chang, T., He, S., Amini, R. & Li, Y. Functional nucleic acids under unusual conditions. ChemBioChem 22, 2369–2383 (2021).

    Article  Google Scholar 

  78. Schlosser, K., Gu, J., Sule, L. & Li, Y. F. Sequence-function relationships provide new insight into the cleavage site selectivity of the 8–17 RNA-cleaving deoxyribozyme. Nucleic Acids Res. 36, 1472–1481 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hollenstein, M. Nucleic acid enzymes based on functionalized nucleosides. Curr. Opin. Chem. Biol. 52, 93–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Huang, P. J. & Liu, J. In vitro selection of chemically modified DNAzymes. ChemistryOpen 9, 1046–1059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Silverman, S. K. Catalyic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci 41, 595–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. 3rd RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122, 2433–2439 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Sidorov, A. V., Grasby, J. A. & Williams, D. M. Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res. 32, 1591–1601 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Y., Liu, E., Lam, C. H. & Perrin, D. M. A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem. Sci. 9, 1813–1821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, Y., Nguyen, K., Spitale, R. C. & Chaput, J. C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 13, 319–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Mortimer, S. A. & Weeks, K. M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 129, 4144–4145 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cozens, C., Pinheiro, V. B., Vaisman, A., Woodgate, R. & Holliger, P. A short adaptive path from DNA to RNA polymerases. Proc. Natl Acad. Sci. USA 109, 8067–8072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2019YFA0904000 to H.Y. and 2016YFA0502600 to Z.L.); the National Natural Science Foundation of China (21977046 to H.Y. and 21708018 to H.Y.); the Fundamental Research Funds for the Central Universities (0213-14380192 to H.Y.); and the Program for Innovative Talents and Entrepreneur in Jiangsu (to Z.L. and H.Y.). We thank the reviewers for their critical reading of the manuscript and for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. conceived the project. Yueyao Wang performed the in vitro selection, biochemical characterization, structural probing and substrate selectivity experiments. Yao Wang performed the intracellular gene silencing experiment. D.S. analysed Tz1 and cleavage reaction products by mass spectrometry. X.S. analysed the biological stability of Tz1. Z.L. designed the Tz1 structural probing and intracellular gene silencing experiments. J.-Y.C. analysed the deep sequencing results of the structural probing experiment by the DMS method. H.Y. wrote the manuscript with input from all authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhe Li or Hanyang Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Vitor Pinheiro, Seung Soo Oh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Chemical probing of Tz1 secondary structures.

(a) Tz1 and its RNA substrate were embedded in structural cassettes, which was subject to SHAPE (for RNA) and DMS (for RNA and TNA) analysis to inform secondary structure predictions. RNA, DNA and TNA regions were shown in grey, black and cyan, respectively. The RNA substrate was inactivated by a 2’-O-methyl modification (indicated by an asterisk) at cleavage site (indicated by a black inverted triangle). The reverse transcription and PCR primer binding sites were highlighted in yellow. In order to discern amplification products from DNA template contamination, a mismatch watermark adenine residue was introduced by reverse transcription primer. Amplification products from cDNA generated by reverse transcription contained adenine at position 115, and were then selected for analysis of mutation profiles at RNA substrate and Tz1 regions. (b) SHAPE reactivity of RNA substrate at each nucleotide position. Black, magenta and red bars indicate low, moderate, and high SHAPE reactivity, respectively. Black Triangle indicates cleavage site. (c) DMS reactivity at each nucleotide position. DMS reacts predominantly with adenine and cytosine bases. Positions were defined as highly reactive (orange bars) if reactivity was greater than 0.35, and as marginally reactive (pink bars) if reactivity was greater than a cut-off of one half standard deviation above the median. RNA substrate (residues 15-33) and Tz1 (residues 52-87) regions were shown. DMS reactivities of nucleotides within linker regions were shown in wheat.

Source data

Extended Data Fig. 2 Selectivity of Tz1 and deoxyribozyme 10-23 (Dz) on mutant and wild-type RNA substrates under different conditions.

(a and b) Tz1- and Dz-catalyzed RNA cleavage reactions at different enzyme:substrate ratios. The substrate concentration was maintained at 100 nM and the enzyme concentration varied. Reactions were carried out in a phosphate-buffered solution (pH 7.4) containing 1 mM KH2PO4, 3 mM Na2HPO4, 20 mM MgCl2, 155 mM NaCl at 37 °C for 3 h. (c and d) Tz1- and Dz-catalyzed RNA cleavage reactions at different magnesium concentrations. Reactions were carried out in a phosphate-buffered solution (pH 7.4) containing 1 mM KH2PO4, 3 mM Na2HPO4, 155 mM NaCl and different concentrations of MgCl2 at 37 °C for 3 h. [Enzyme] = 100 nM. [Substrate] = 100 nM. (E and F) Tz1- and Dz-catalyzed RNA cleavage reactions for different periods of time. Reactions were also carried out in a phosphate-buffered solution (pH 7.4) containing 1 mM KH2PO4, 3 mM Na2HPO4, 155 mM NaCl and 4 mM MgCl2 (for Tz1) or 16 mM MgCl2 (for Dz) at 37 °C for 3 h. [Enzyme] = 100 nM. [Substrate] = 100 nM. Error bars denote ±s.d. of the mean for n = 3 independent replicates.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1–3, uncropped images and references.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed gel.

Source Data Fig. 2

Unprocessed gel.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Unprocessed gels.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed gel and Western blots.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y., Song, D. et al. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat. Chem. 14, 350–359 (2022). https://doi.org/10.1038/s41557-021-00847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00847-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing