Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of bilayer borophene

Abstract

As the nearest-neighbour element to carbon, boron is theoretically predicted to have a planar two-dimensional form, named borophene, with novel properties, such as Dirac fermions and superconductivity. Several polymorphs of monolayer borophene have been grown on metal surfaces, yet thicker bilayer and few-layer nanosheets remain elusive. Here we report the synthesis of large-size, single-crystalline bilayer borophene on the Cu(111) surface by molecular beam epitaxy. Combining scanning tunnelling microscopy and first-principles calculations, we show that bilayer borophene consists of two stacked monolayers that are held together by covalent interlayer boron–boron bonding, and each monolayer has β12-like structures with zigzag rows. The formation of a bilayer is associated with a large transfer and redistribution of charge in the first boron layer on Cu(111), which provides additional electrons for the bonding of additional boron atoms, enabling the growth of the second layer. The bilayer borophene is shown to possess metallic character, and be less prone to being oxidized than its monolayer counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STM images showing the evolution of the Cu(111) surface with increasing B coverage.
Fig. 2: High-resolution STM images and structural models of monolayer and bilayer borophene on Cu(111).
Fig. 3: Charge distribution between bilayer borophene and the Cu(111) substrate.
Fig. 4: The anti-oxidation ability and electronic structures of borophene on Cu(111).

Similar content being viewed by others

Data availability

Data that support the finding of this study are available within the article and its Supplementary Information and data files. Data for the Supplementary figures and DFT-calculated structures are provided as Supplementary Data files. Source data are provided with this paper.

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, L. et al. Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys. Rev. Lett. 110, 085504 (2013).

    Article  PubMed  Google Scholar 

  3. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Zhuo, Z., Wu, X. & Yang, J. Two-dimensional phosphorus porous polymorphs with tunable band gaps. J. Am. Chem. Soc. 138, 7091–7098 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Zhai, H. J. Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Piazza, Z. A. et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 4113 (2014).

    Article  Google Scholar 

  7. Wang, L.-S. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 35, 69–142 (2016).

    Article  Google Scholar 

  8. Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).

    Article  PubMed  Google Scholar 

  9. Wu, X. et al. Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, L. Z., Yan, Q. B., Du, S. X., Su, G. & Gao, H. J. Boron sheet adsorbed on metal surfaces: structures and electronic properties. J. Phys. Chem. C 116, 18202–18206 (2012).

    Article  CAS  Google Scholar 

  12. Liu, H., Gao, J. & Zhao, J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Z., Yang, Y., Gao, G. & Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 54, 13022–13026 (2015).

    Article  CAS  Google Scholar 

  14. Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Sheng, S. et al. Raman spectroscopy of two-dimensional borophene sheets. ACS Nano 13, 4133–4139 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, X. et al. Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017).

    Article  Google Scholar 

  18. Zhang, Z., Yang, Y., Penev, E. S. & Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 27, 1605059 (2017).

    Article  Google Scholar 

  19. Adamska, L., Sadasivam, S., Foley, J. J., Darancet, P. & Sharifzadeh, S. First-principles investigation of borophene as a monolayer transparent conductor. J. Phys. Chem. C 122, 4037–4045 (2018).

    Article  CAS  Google Scholar 

  20. Huang, Y., Shirodkar, S. N. & Yakobson, B. I. Two-dimensional boron polymorphs for visible range plasmonics: a first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Lian, C. et al. Integrated plasmonics: broadband Dirac plasmons in borophene. Phys. Rev. Lett. 125, 116802 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, H. et al. Lattice thermal conductivity of borophene from first principle calculation. Sci. Rep. 7, 45986 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, D. et al. 2D boron sheets: structure, growth, and electronic and thermal transport properties. Adv. Funct. Mater. 8, 1904349 (2019).

    Google Scholar 

  24. Kong, L. et al. One-dimensional nearly free electron states in borophene. Nanoscale 11, 15605–15611 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Feng, B. et al. Dirac fermions in borophene. Phys. Rev. Lett. 118, 096401 (2017).

    Article  PubMed  Google Scholar 

  26. Feng, B. et al. Discovery of 2D anisotropic Dirac cones. Adv. Mater. 30, 1704025 (2018).

    Article  Google Scholar 

  27. Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Xiao, R. C. et al. Enhanced superconductivity by strain and carrier-doping in borophene: a first principles prediction. Appl. Phys. Lett. 109, 122604 (2016).

    Article  Google Scholar 

  29. Cheng, C. et al. Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping. 2D Mater. 4, 025032 (2017).

    Article  Google Scholar 

  30. Zhong, Q. et al. Metastable phases of 2D boron sheets on Ag(111). J. Phys. Condens. Mat. 29, 095002 (2017).

    Article  Google Scholar 

  31. Liu, X. et al. Geometric imaging of borophene polymorphs with functionalized probes. Nat. Commun. 10, 1642 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhong, Q. et al. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 1, 021001 (2017).

    Article  Google Scholar 

  33. Wang, Y. et al. Realization of regular-mixed quasi-1D borophene chains with long-range order. Adv. Mater. 93, e2005128 (2020).

    Article  Google Scholar 

  34. Li, W. et al. Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018).

    Article  CAS  Google Scholar 

  35. Kiraly, B. et al. Borophene synthesis on Au(111). ACS Nano 13, 3816–3822 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, R. et al. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 14, 44–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, R., Gozar, A. & Božović, I. Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron. npj Quantum Mater. 4, 40 (2019).

    Article  Google Scholar 

  38. Vinogradov, N. A., Lyalin, A., Taketsugu, T., Vinogradov, A. S. & Preobrajenski, A. Single-phase borophene on Ir(111): formation, structure, and decoupling from the support. ACS Nano 13, 14511–14518 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Li, H. et al. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 12, 1262–1272 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Ranjan, P. et al. Freestanding borophene and its hybrids. Adv. Mater. 31, e1900353 (2019).

    Article  PubMed  Google Scholar 

  41. Ranjan, P., Lee, J. M., Kumar, P. & Vinu, A. Borophene: new sensation in flatland. Adv. Mater. 32, e2000531 (2020).

    Article  PubMed  Google Scholar 

  42. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, Z. et al. Even–odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides. Nat. Commun. 7, 12955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de la Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kumar, P. et al. Laser shock tuning dynamic interlayer coupling in graphene–boron nitride moiré superlattices. Nano Lett. 19, 283–291 (2018).

    Article  PubMed  Google Scholar 

  47. Cui, J. et al. Transport evidence of asymmetric spin-orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 10, 2044 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moriya, R. et al. Emergence of orbital angular moment at van Hove singularity in graphene/h-BN moire superlattice. Nat. Commun. 11, 5380 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao, N., Wu, X., Jiang, X., Bai, Y. & Zhao, J. Structure and stability of bilayer borophene: the roles of hexagonal holes and interlayer bonding. FlatChem 7, 48–54 (2018).

    Article  CAS  Google Scholar 

  50. Nakhaee, M., Ketabi, S. A. & Peeters, F. M. Dirac nodal line in bilayer borophene: tight-binding model and low-energy effective Hamiltonian. Phys. Rev. B 98, 115413 (2018).

    Article  CAS  Google Scholar 

  51. Li, D. et al. From two- to three-dimensional van der Waals layered structures of boron crystals: an ab initio study. ACS Omega 4, 8015–8021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, S. G., Zheng, B., Xu, H. & Yang, X. B. Ideal nodal line semimetal in a two-dimensional boron bilayer. J. Phys. Chem. C 123, 4977–4983 (2019).

    Article  CAS  Google Scholar 

  53. Zhao, Y., Zeng, S. & Ni, J. Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93, 014502 (2016).

    Article  Google Scholar 

  54. Banerjee, S., Periyasamy, G. & Pati, S. K. Possible application of 2D-boron sheets as anode material in lithium ion battery: a DFT and AIMD study. J. Mater. Chem. A 2, 3856 (2014).

    Article  CAS  Google Scholar 

  55. Chen, W. J. et al. B48: a bilayer boron cluster. Nanoscale 13, 3868–3876 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, X. et al. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. https://doi.org/10.1038/s41563-021-01084-2 (2021).

  57. Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ong, C. W. et al. X-ray photoemission spectroscopy of nonmetallic materials: electronic structures of boron and BxOy. J. Appl. Phys. 95, 3527–3534 (2004).

    Article  CAS  Google Scholar 

  59. Guoan Tai, T. H. et al. Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 54, 15473–15477 (2015).

    Article  Google Scholar 

  60. Zhong, H., Huang, K., Yu, G. & Yuan, S. Electronic and mechanical properties of few-layer borophene. Phys. Rev. B 98, 054104 (2018).

    Article  CAS  Google Scholar 

  61. Zhang, X., Sun, Y., Ma, L., Zhao, X. & Yao, X. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor. Nanotechnology 29, 305706 (2018).

    Article  PubMed  Google Scholar 

  62. Kresse, G. F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  63. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  CAS  Google Scholar 

  64. Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  65. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  66. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  67. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  68. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  69. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

  70. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  71. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2018YFE0202700, 2016YFA0200602, 2016YFA0300904 and 2016YFA0202301), the National Natural Science Foundation of China (12134019, 22073087, 11825405, 21573204 and 21890751), the Beijing Natural Science Foundation (Z180007), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000 and XDB01020300), the Anhui Initiative in Quantum Information Technologies (AHY090400), the National Program for Support of Top-notch Young Professional, NSFC-MAECI (51861135202) and the Super Computer Centre of USTCSCC and SCCAS.

Author information

Authors and Affiliations

Authors

Contributions

L.C. and K.W. designed and conceived this research. C.C., W.L., X.W., P.Z., C.M. and Y.W. performed the experiments under the supervision of L.C. and K.W. H.L. and Z.Z. did the calculation works under the supervision of X.W. B.F. and P.C. participated in the data analysis and discussion. All the authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Xiaojun Wu, Kehui Wu or Lan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Prashant Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Discussion and Table 1.

Supplementary Data 1

Raw data of graphs in Supplementary Figs. 4, 17 and 19.

Supplementary Data 2

Structural models of borophene shown in the main text and the Supplementary Information.

Source data

Source Data Fig. 3

Raw data of planar-averaged electron density difference for B/Cu in Fig. 3.

Source Data Fig. 4

Raw data of all graphs in Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Lv, H., Zhang, P. et al. Synthesis of bilayer borophene. Nat. Chem. 14, 25–31 (2022). https://doi.org/10.1038/s41557-021-00813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00813-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing