Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A directive Ni catalyst overrides conventional site selectivity in pyridine C–H alkenylation

Abstract

Achieving the transition metal-catalysed pyridine C3−H alkenylation, with pyridine as the limiting reagent, has remained a long-standing challenge. Previously, we disclosed that the use of strong coordinating bidentate ligands can overcome catalyst deactivation and provide Pd-catalysed C3 alkenylation of pyridines. However, this strategy proved ineffective when using pyridine as the limiting reagent, as it required large excesses and high concentrations to achieve reasonable yields, which rendered it inapplicable to complex pyridines prevalent in bioactive molecules. Here we report that a bifunctional N-heterocyclic carbene-ligated Ni–Al catalyst can smoothly furnish C3–H alkenylation of pyridines. This method overrides the intrinsic C2 and/or C4 selectivity, and provides a series of C3-alkenylated pyridines in 43–99% yields and up to 98:2 C3 selectivity. This method not only allows a variety of pyridine and heteroarene substrates to be used as the limiting reagent, but is also effective for the late-stage C3 alkenylation of diverse complex pyridine motifs in bioactive molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Remote C–H activation via a macrocyclophane transition state.
Fig. 2: Mechanism experiments and proposed mechanism.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2018614 (L10). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Ping, L., Chung, D. S., Bouffard, J. & Lee, S. Transition metal-catalyzed site- and regio-divergent C–H bond functionalization. Chem. Soc. Rev. 46, 4299–4328 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Funken, N., Zhang, Y.-Q. & Gansäuer, A. Regiodivergent catalysis: a powerful tool for selective catalysis. Chem. Eur. J. 23, 19–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Neufeldt, S. R. & Sanford, M. S. Controlling site selectivity in palladium-catalyzed C−H bond functionalization. Acc. Chem. Res. 45, 936–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takagi, J., Sato, K., Hartwig, J. F., Ishiyamaa, T. & Miyaura, N. Iridium-catalyzed C–H coupling reaction of heteroaromatic compounds with bis(pinacolato)diboron: regioselective synthesis of heteroarylboronates. Tetrahedron Lett. 43, 5649–5651 (2002).

    Article  CAS  Google Scholar 

  5. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Duong, H. A., Gilligan, R. E., Cooke, M. L., Phipps, R. J. & Gaunt, M. J. Copper(II)-catalyzed meta-selective direct arylation of α-aryl carbonyl compounds. Angew. Chem. Int. Ed. 50, 463–466 (2011).

    Article  CAS  Google Scholar 

  7. Ackermann, L., Hofmann, N. & Vicente, R. Carboxylate-assisted ruthenium-catalyzed direct alkylations of ketimines. Org. Lett. 13, 1875–1877 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Saidi, O. et al. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Meng, G. et al. Achieving site-selectivity for C−H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Z. et al. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front. 2, 1107–1295 (2015).

    Article  CAS  Google Scholar 

  13. Leow, D., Li, G., Mei, T. S. & Yu, J. Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dey, A., Sinha, S. K., Achar, T. K. & Maiti, D. Accessing remote meta- and para-C(sp2)–H bonds with covalently attached directing groups. Angew. Chem. Int. Ed. 58, 10820–10843 (2019).

    Article  CAS  Google Scholar 

  15. Mihai, M. T., Genov, G. R. & Phipps, R. J. Access to the meta position of arenes through transition metal catalysed C–H bond functionalisation: a focus on metals other than palladium. Chem. Soc. Rev. 47, 149–171 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Z., Tanaka, K. & Yu, J.-Q. Remote site-selective C−H activation directed by a catalytic bifunctional template. Nature 543, 538–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, H. et al. Differentiation and functionalization of remote C–H bonds in adjacent positions. Nat. Chem. 12, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis, H. J. & Phipps, R. J. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem. Sci. 8, 864–877 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, D. S., Park, W.-J. & Jun, C.-H. Metal−organic cooperative catalysis in C−H and C−C bond activation. Chem. Rev. 117, 8977–9015 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Kuninobu, Y., Ida, H., Nishi, M. & Kanai, M. A meta-selective C−H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem. 7, 712–717 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Roosen, P. C. et al. Outer-sphere direction in iridium C−H borylation. J. Am. Chem. Soc. 134, 11350–11353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davis, H. J., Genov, G. R. & Phipps, R. J. meta-Selective C–H borylation of benzylamine, phenethylamine and phenylpropylamine-derived amides enabled by a single anionic ligand. Angew. Chem. Int. Ed. 56, 13351–13355 (2017).

    Article  CAS  Google Scholar 

  23. Davis, H. J., Mihai, M. T. & Phipps, R. J. Ion pair-directed regiocontrol in transition-metal catalysis: a meta-selective C−H borylation of aromatic quaternary ammonium salts. J. Am. Chem. Soc. 138, 12759–12762 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Chattopadhyay, B. et al. Ir-catalyzed ortho-borylation of phenols directed by substrate–ligand electrostatic interactions: a combined experimental/in silico strategy for optimizing weak interactions. J. Am. Chem. Soc. 139, 7864–7871 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bisht, R. & Chattopadhyay, B. Formal Ir-catalyzed ligand-enabled ortho and meta borylation of aromatic aldehydes via in situ-generated imines. J. Am. Chem. Soc. 138, 84–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Li, H. L., Kuninobu, Y. & Kanai, M. Lewis Acid–base interaction-controlled ortho-selective C−H borylation of aryl sulfides. Angew. Chem. Int. Ed. 56, 1495–1499 (2017).

    Article  CAS  Google Scholar 

  27. Hoque, M. E., Bisht, R., Haldar, C. & Chattopadhyay, B. Noncovalent interactions in Ir-catalyzed C−H activation: L-shaped ligand for para-selective borylation of aromatic esters. J. Am. Chem. Soc. 139, 7745–7748 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, L., Uemura, N. & Nakao, Y. meta-Selective C−H borylation of benzamides and pyridines by an iridium−Lewis acid bifunctional catalyst. J. Am. Chem. Soc. 141, 7972–7979 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Lang, D. K., Kaur, R., Arora, R., Saini, B. & Arora, S. Nitrogen-containing heterocycles as anticancer agents: an overview. Anti-Cancer Agents Med. Chem. 20, 2150–2168 (2020).

    Article  CAS  Google Scholar 

  30. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Das, R. & Kapur, M. Transition-metal-catalyzed C–H functionalization reactions of π-deficient heterocycles. Asian J. Org. Chem. 7, 1217–1235 (2018).

    Article  CAS  Google Scholar 

  32. Murakami, K., Yamada, S., Kaneda, T. & Itami, K. C−H functionalization of azines. Chem. Rev. 117, 9302–9332 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Stephens, D. & Larionov, O. Recent advances in the C−H functionalization of the distal positions in pyridines and quinolines. Tetrahedron 71, 8683–8716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakao, Y. Transition-metal-catalyzed C−H functionalization for the synthesis of substituted pyridines. Synthesis 2011, 3209–3219 (2011).

    Article  Google Scholar 

  35. Rubio-Pérez, L. et al. A well-defined NHC–Ir(III) catalyst for the silylation of aromatic C–H bonds: substrate survey and mechanistic insights. Chem. Sci. 8, 4811–4822 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wubbolt, S. & Oestreich, M. Catalytic electrophilic C–H silylation of pyridines enabled by temporary dearomatization. Angew. Chem. Int. Ed. 54, 15876–15879 (2015).

    Article  Google Scholar 

  37. Cheng, C. & Hartwig, J. F. Iridium-catalyzed silylation of aryl C−H bonds. J. Am. Chem. Soc. 137, 592–595 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Ye, M. et al. Ligand-promoted C3-selective arylation of pyridines with Pd catalysts: gram-scale synthesis of (±)-preclamol. J. Am. Chem. Soc. 133, 19090–19093 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Li, B.-J. & Shi, Z.-J. Ir-catalyzed highly selective addition of pyridyl C−H bonds to aldehydes promoted by triethylsilane. Chem. Sci. 2, 488–493 (2011).

    Article  CAS  Google Scholar 

  40. Mkhalid, I. A. I. et al. Ir-catalyzed borylation of C−H bonds in N-containing heterocycles: regioselectivity in the synthesis of heteroaryl boronate esters. Angew. Chem. Int. Ed. 45, 489–491 (2006).

    Article  CAS  Google Scholar 

  41. Takagi, J., Sato, K., Hartwig, J. F., Ishiyama, T. & Miyaura, N. Iridium-catalyzed C−H coupling reaction of heteroaromatic compounds with bis(pinacolato)diboron: regioselective synthesis of heteroarylboronates. Tetrahedron Lett. 43, 5649–5651 (2002).

    Article  CAS  Google Scholar 

  42. Ye, M., Gao, G.-L. & Yu, J.-Q. Ligand-promoted C-3 selective C−H olefination of pyridines with Pd catalysts. J. Am. Chem. Soc. 133, 6964–6967 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Cong, X., Tang, H., Wu, C. & Zeng, X. Role of mono-N-protected amino acid ligands in palladium(II)-catalyzed dehydrogenative Heck reactions of electron-deficient (hetero)arenes: experimental and computational studies. Organometallics 32, 6565–6575 (2013).

    Article  CAS  Google Scholar 

  44. Yamada, S., Kaneda, T., Steib, P., Murakami, K. & Itami, K. Dehydrogenative synthesis of 2,2′-bipyridyls through regioselective pyridine dimerization. Angew. Chem. Int. Ed. 58, 8341–8345 (2019).

    Article  CAS  Google Scholar 

  45. Kundu, A., Inoue, M., Nagae, H., Tsurugi, H. & Mashima, K. Direct ortho-C–H aminoalkylation of 2-substituted pyridine derivatives catalyzed by yttrium complexes with N,N′-diarylethylenediamido ligands. J. Am. Chem. Soc. 140, 7332–7342 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Song, G., O, W. W. N. & Hou, Z. Enantioselective C−H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes. J. Am. Chem. Soc. 136, 12209–12212 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, B., Huang, Y., Lan, J., Song, F. & You, J. Pd-catalyzed oxidative C−H/C−H cross-coupling of pyridines with heteroarenes. Chem. Sci. 4, 2163–2167 (2013).

    Article  CAS  Google Scholar 

  48. Tobisu, M., Hyodo, I. & Chatani, N. Nickel-catalyzed reaction of arylzinc reagents with N-aromatic heterocycles: a straightforward approach to C–H bond arylation of electron-deficient heteroaromatic compounds. J. Am. Chem. Soc. 131, 12070–12071 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Lewis, J. C., Bergman, R. G. & Ellman, J. A. Rh(I)-catalyzed alkylation of quinolines and pyridines via C−H bond activation. J. Am. Chem. Soc. 129, 5332–5333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakao, Y., Kanyiva, K. S. & Hiyama, T. A strategy for C–H activation of pyridines: direct C-2 selective alkenylation of pyridines by nickel/Lewis acid catalysis. J. Am. Chem. Soc. 130, 2448–2449 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kawashima, T., Takao, T. & Suzuki, H. Dehydrogenative coupling of 4-substituted pyridines catalyzed by diruthenium complexes. J. Am. Chem. Soc. 129, 11006–11007 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, L., Semba, K. & Nakao, Y. para-Selective C–H borylation of (hetero)arenes by cooperative iridium/aluminum catalysis. Angew. Chem. Int. Ed. 56, 4853–4857 (2017).

    Article  CAS  Google Scholar 

  53. Andou, T., Saga, Y., Komai, H., Matsunaga, S. & Kanai, M. Cobalt-catalyzed C4-selective direct arylation of pyridines. Angew. Chem. Int. Ed. 52, 3213–3216 (2013).

    Article  CAS  Google Scholar 

  54. Nakao, Y., Kanyiva, K. S. & Hiyama, T. A strategy for C−H activation of pyridines: direct C-2 selective alkenylation of pyridines by nickel/Lewis acid catalysis. J. Am. Chem. Soc. 130, 2448–2449 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Tsai, C.-C. et al. Bimetallic nickel aluminum mediated para-selective alkenylation of pyridine: direct observation of η21-pyridine Ni(0)−Al(III) intermediates prior to C−H bond activation. J. Am. Chem. Soc. 132, 11887–11889 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Nakao, Y., Yamada, Y., Kashihara, N. & Hiyama, T. Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis. J. Am. Chem. Soc. 132, 13666–13668 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Evans, K. J. & Mansell, S. M. Functionalised N-heterocyclic carbene ligands in bimetallic architectures. Chem. Eur. J. 26, 5927–5941 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Dardun, V., Escomel, L., Jeanneau, E. & Camp, C. On the alcoholysis of alkyl-aluminum(III) alkoxy-NHC derivatives: reactivity of the Al-carbene Lewis pair versus Al-alkyl. Dalton Trans. 47, 10429–10433 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Khake, S. M. & Chatani, N. Nickel-catalyzed C–H functionalization using a non-directed strategy. Chem 6, 1056–1081 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (91856104 and 21871145), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (19JCZDJC37900) and ‘Frontiers Science Center for New Organic Matter’, Nankai University (63181206), for financial support (M.Y.). We gratefully acknowledge The Scripps Research Institute, the Lindemann Trust (N.Y.S.L.) and the NIH (National Institute of General Medical Sciences grant R01GM102265) for financial support (J.-Q.Y.).

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.Y., M.Y. and T.Z. conceived the concept. T.Z. developed the conditions and performed the alkenylation of pyridines. Y.-X.L., J.-F.L. and Y.L. prepared the substrates and ligands. All authors analysed the results. N.Y.S.L. provided insightful suggestions in analysing the data and editing the manuscript.

Corresponding authors

Correspondence to Mengchun Ye or Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Manmohan Kapur, Oleg Larionov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, mechanistic studies, Supplementary Figs. 1–90, Tables 1–7, X-ray crystallographic data and references.

Supplementary Data 1

Crystallographic data for L10; CCDC reference 2018614.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Luan, YX., Lam, N.Y.S. et al. A directive Ni catalyst overrides conventional site selectivity in pyridine C–H alkenylation. Nat. Chem. 13, 1207–1213 (2021). https://doi.org/10.1038/s41557-021-00792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00792-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing