Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation and characterization of diazoolefins

Abstract

Diazoolefins tend to be highly reactive compounds that rapidly lose dinitrogen. So far, most experimental evidence for diazoolefins is indirect, via trapping experiments. Here we show that diazoolefins are observed to form in reactions of N-heterocyclic olefins with nitrous oxide. The products benefit from resonance stabilization, which enables isolation on a preparative scale, and comprehensive characterization, which includes crystallographic analyses. N-heterocyclic diazoolefins show a strong ylidic character, with a high charge density at the carbon atom next to the diazo group. Despite the presence of terminal N2 groups, N-heterocyclic diazoolefins display a good thermal stability, which surpasses that observed for most diazoalkanes. N-heterocyclic diazoolefins can bind transition and main group metal complexes without the liberation of dinitrogen, and spectroscopic data show that they are strong electron donors. They can also undergo reactions that involve the N2 group, as evidenced by cycloaddition reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties and structures of diazoolefins and related compounds.
Fig. 2: Electronic structure of diazoolefins.
Fig. 3: Photoreactions of diazoolefins.
Fig. 4: Synthesis of diazoolefin complexes.
Fig. 5: Synthesis of organic diazoolefin adducts.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers 2059964 (1), 2059969 (3), 2081293 (4), 2084389 (7), 2059970 (8), 2059965 (9), 2059966 (10), 2059971 (11), 2059972 (12), 2082844 (13), 2059967 (14), 2059973 (15), 2059968 (16) and 2059974 (17). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Relevant data for this study are available within the article and its Supplementary Information. Original data files for the spectroscopic analyses can be obtained from the authors upon reasonable request.

References

  1. Regitz, M. & Maas, G. Diazo Compounds (Academic, 1986).

  2. Ford, A. et al. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev. 115, 9981–10080 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Candeias, N. R., Paterna, R. & Gois, P. M. P. Homologation reaction of ketones with diazo compounds. Chem. Rev. 116, 2937–2981 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C–H bonds. Chem. Rev. 110, 704–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Green, S. P. et al. Thermal stability and explosive hazard assessment of diazo compounds and diazo transfer reagents. Org. Process Res. Dev. 24, 67–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Hock, K. J. & Koenigs, R. M. The generation of diazo compounds in continuous-flow. Chem. Eur. J. 24, 10571–10583 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Knorr, R. Alkylidenecarbenes, alkylidenecarbenoids, and competing species: which Is responsible for vinylic nucleophilic substitution, [1 + 2] cycloadditions, 1.5-CH insertions, and the Fritsch–Buttenberg–Wiechell rearrangement? Chem. Rev. 104, 3795–3849 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Kirmse, W. Alkenylidenes in organic synthesis. Angew. Chem. Int. Ed. Engl. 36, 1164–1170 (1997).

    Article  CAS  Google Scholar 

  9. Lahi, P. M. & Berson, J. A. Thermal rearrangement of an allenic diazoalkane and intermolecular capture of a diazoethene by a cyclopropene to give a common dihydropyridazine product. J. Am. Chem. Soc. 103, 7011–7012 (1981).

    Article  Google Scholar 

  10. Ando, W., Furuhata, T. & Takata, T. A highly efficient reaction of thiobenzophenone for 1-diazoalkene. Tetrahedron Lett. 26, 4499–4500 (1985).

    Article  CAS  Google Scholar 

  11. Munschauer, R. & Maas, G. 1,3-(C→O) silyl shift in α-diazo α-silyl ketones: cycloaddition reactions and kinetic proof for the β-siloxydiazoalkane intermediate. Angew. Chem. Int. Ed. Engl. 30, 306–308 (1991).

    Article  Google Scholar 

  12. Munschauer, R. & Maas, G. Cycloaddition products from (1-diazo-2-oxoalkyl)silanes and cyclopropenes. A silatropic 2,3-diazabicyclo[3.1.0]hex-3-ene/1,4-dihydropyidazine equilibrium. Chem. Ber. 125, 1227–1234 (1992).

    Article  CAS  Google Scholar 

  13. Manz, B. & Maas, G. Synthesis of 5-alkylidene-4,5-dihydro-3H-1,2,4(λ3)-diazaphospholes from α-silyl-α-diazoketones and phosphaalkenes. Tetrahedron 52, 10053–10072 (1996).

    Article  CAS  Google Scholar 

  14. Brahms, J. C. & Dailey, W. P. Difluoropropadienone as a source of difluorovinylidene and difluorodiazoethene. J. Am. Chem. Soc. 112, 4046–4047 (1990).

    Article  CAS  Google Scholar 

  15. Bott, K. 2,2-(N,N′-dimethyl-ethylendiamino)-ethylenediazonium-ion, ein diazonium ion mit ungewöhnlichen eigenschaften. Tetrahedron Lett. 26, 3199–3202 (1985).

    Article  CAS  Google Scholar 

  16. Bott, K. Dialkylamino-substituierte ethylendiazoniumsalze. Chem. Ber. 120, 1867–1871 (1987).

    Article  CAS  Google Scholar 

  17. Klein, S., Tonner, R. & Frenking, G. Carbodicarbenes and related divalent carbon(0) compounds. Chem. Eur. J. 16, 10160–10170 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Fustier-Bouitignon, M., Nebra, N. & Mézailles, N. Geminal dianions stabilized by main group elements. Chem. Rev. 119, 8555–8700 (2019).

    Article  CAS  Google Scholar 

  19. Frenking, G. & Tonner, R. Carbodicarbenes–divalent carbon(0) compounds exhibiting carbon–carbon donor–acceptor bonds. WIREs Comput. Mol. Sci. 1, 869–878 (2011).

    Article  CAS  Google Scholar 

  20. Antoni, P. W., Golz, C., Holstein, J. J., Pantazis, D. & Hansmann, M. M. Isolation and reactivity of an elusive diazoalkene. Nat. Chem. 13, 587–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Roy, M. M. D. & Rivard, E. Pushing chemical boundaries with N-heterocyclic olefins (NHOs): from catalysis to main group element chemistry. Acc. Chem. Res. 50, 2017–2025 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Crocker, R. D. & Nguyen, T. V. The resurgence of the highly ylidic N-heterocyclic olefins as a new class of organocatalysts. Chem. Eur. J. 22, 2208–2213 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Naumann, S. Synthesis, properties & applications of N-heterocyclic olefins in catalysis. Chem. Commun. 55, 11658–11670 (2019).

    Article  CAS  Google Scholar 

  24. Severin, K. Synthetic chemistry with nitrous oxide. Chem. Soc. Rev. 44, 6375–6386 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Eymann, L. Y. M. et al. Synthesis of organic super-electron-donors by reaction of nitrous oxide with N-heterocyclic olefins. J. Am. Chem. Soc. 141, 17112–17116 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Allen, F. H. Bond lengths relationships in diazo and diazonium compounds. Acta Cryst. B 51, 378–381 (1995).

    Article  Google Scholar 

  27. Al-Rafia, S. M. I. et al. Intercepting low oxidation sate main group hydrides with a nucleophilic N-heterocyclic olefin. Chem. Commun. 47, 6987–6989 (2011).

    Article  CAS  Google Scholar 

  28. Gruber, M., Bauer, W., Maid, H., Schöll, K. & Tykwinski, R. R. Synthetic and NMR studies on hexaphenylcarbodiphosphorane (Ph3P=C=PPh3). Inorg. Chim. Acta 468, 152–158 (2017).

    Article  CAS  Google Scholar 

  29. Frisch, M. et al. Gaussian 16, Revision A.03 (Gaussian, Inc., 2016).

  30. Petz, W. Addition compounds between carbones, CL2, and main group Lewis acids: a new glance at old and new compounds. Coord. Chem. Rev. 291, 1–27 (2015).

    Article  CAS  Google Scholar 

  31. Zhao, L., Chai, C., Petz, W. & Frenking, G. Carbones and carbon atom as ligands in transition metal complexes. Molecules 25, 4943 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  32. Wiberg, K. B. Application of the Pople–Santry–Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968).

    Article  CAS  Google Scholar 

  33. Glendening, E. D. & Weinhold, F. Natural resonance theory: II. Natural bond order and valency. J. Comput. Chem. 19, 610–627 (1998).

    Article  CAS  Google Scholar 

  34. Glendening, E. D. & Weinhold, F. Natural resonance theory: I. General formalism. J. Comput. Chem. 19, 593–609 (1998).

    Article  CAS  Google Scholar 

  35. Glendening, E. D., Badenhoop, J. & Weinhold, F. Natural resonance theory: III. Chemical applications. J. Comput. Chem. 19, 628–646 (1998).

    Article  CAS  Google Scholar 

  36. Yang, Z., Stivanin, M. L., Jurberg, I. D. & Koenigs, R. M. Visible light-promoted reactions with diazo compounds: a mild and practical strategy towards free carbene intermediates. Chem. Soc. Rev. 49, 6833–6847 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Tskhovrebov, A. G., Vuichoud, B., Solari, E., Scopelliti, R. & Severin, K. Adducts of nitrous oxide and N-heterocyclic carbenes: syntheses, structures, and reactivity. J. Am. Chem. Soc. 135, 9486–9492 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Eymann, L. Y. M., Scopelliti, R., Tirani, F. F. & Severin, K. Synthesis of azo dyes from mesoionic carbenes and nitrous oxide. Chem. Eur. J. 24, 7957–7963 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, S.-k, Shih, W.-C., Chen, W.-C. & Ong, T.-G. Carbodicarbenes and their captodative behavior in catalysis. ChemCatChem 10, 1483–1498 (2018).

    Article  CAS  Google Scholar 

  40. Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an extremely bent acyclic allene (a ‘carbodicarbene’): a strong donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).

    Article  CAS  Google Scholar 

  41. Chen, W.-C., Hsu, Y.-C., Lee, C.-Y., Yap, G. P. A. & Ong, T.-G. Synthetic modification of acyclic bent allenes (carbodicarbenes) and further studies on their structural implications and reactivities. Organometallics 32, 2435–2442 (2013).

    Article  CAS  Google Scholar 

  42. Chen, W.-C. et al. Expanding the ligand framework diversity of carbodicarbenes and direct detection of boron activation in the methylation of amines with CO2. Angew. Chem. Int. Ed. 54, 15207–15212 (2015).

    Article  CAS  Google Scholar 

  43. Chen, W.-C. et al. The elusive three-coordinate dicationic hydrido boron complex. J. Am. Chem. Soc. 136, 914–917 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Dröge, T. & Glorius, F. The measure of all rings—N-heterocyclic carbenes. Angew. Chem. Int. Ed. 49, 6940–6952 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the EPFL. We thank A. Gitlina for the infrared spectroscopy measurements, W. Feuerstein for help with the synthesis of 1, C. Berton for help with NMR analyses and D. Ortiz for help with mass spectrometry.

Author information

Authors and Affiliations

Authors

Contributions

P.V. and K.S. designed the experiments, P.V. performed the synthetic experiments and analysed the data, Z.D. performed the computational analysis, R.S. and F.F.-T. collected and processed the X-ray data, and P.V., Z.D. and K.S. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kay Severin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Gabriela Borosky, Tiow-Gan Ong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, analytical data including copies of NMR spectra, and details regarding the crystallographic and computational analyses.

Supplementary Data 1

Crystallographic data for compound 1; CCDC reference 2059964.

Supplementary Data 2

Crystallographic data for compound 3; CCDC reference 2059969.

Supplementary Data 3

Crystallographic data for compound 4; CCDC reference 2081293.

Supplementary Data 4

Crystallographic data for compound 7; CCDC reference 2084389.

Supplementary Data 5

Crystallographic data for compound 8; CCDC reference 2059970.

Supplementary Data 6

Crystallographic data for compound 9; CCDC reference 2059965.

Supplementary Data 7

Crystallographic data for compound 10; CCDC reference 2059966.

Supplementary Data 8

Crystallographic data for compound 11; CCDC reference 2059971.

Supplementary Data 9

Crystallographic data for compound 12; CCDC reference 2059972.

Supplementary Data 10

Crystallographic data for compound 13; CCDC reference 2082844.

Supplementary Data 11

Crystallographic data for compound 14; CCDC reference 2059967.

Supplementary Data 12

Crystallographic data for compound 15; CCDC reference 2059973.

Supplementary Data 13

Crystallographic data for compound 16; CCDC reference 2059968.

Supplementary Data 14

Crystallographic data for compound 17; CCDC reference 2059974.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varava, P., Dong, Z., Scopelliti, R. et al. Isolation and characterization of diazoolefins. Nat. Chem. 13, 1055–1060 (2021). https://doi.org/10.1038/s41557-021-00790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00790-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing